Journal of Cluster Science

, Volume 27, Issue 3, pp 1041–1056 | Cite as

Stabilities of AlnCu (n = 1–19) Clusters and Magnetic Properties of Three Cu-Doped Al Clusters

Original Paper


By using the Amsterdam Density Functional program, we have studied the geometric features, stabilities and magnetic properties of AlnCu (n = 1–19) clusters. The magnetic structures of Al17Cu2 and Al19Cu clusters are found. Although the high spin ground state of Al12Cu cluster is in accordance with the Hund’s rule under spherical Jellium model (SJM), it is difficult to explain why the Al17Cu2 and Al19Cu clusters exhibit larger magnetic moments by the model. A superatom model under equivalent charge distribution is proposed. The magnetic properties of the Cu-doped Al clusters can be explained well by combination of the superatom model with SJM.


Magnetic moment Cu-doped Al clusters Superatom Icosahedron 



The Natural Science Foundation of Zhejiang Province (Grant No. LY16A040011), and the National Natural Science Foundation of China (Grant No. 11074062) supported this work. We wish to thank Dr. Hong-Min Jiang, Yi Ding, Quan-lin Ye, Wu-Ming Zhu, Chui-ping Yang, Xiao-feng Xu and Wang-feng Ding for useful discussions, Prof. Gao-xiang Ye and Bin Song at Zhejiang University, Prof. Xiao-Feng Jin at Fudan University, and Prof. Hong-Sheng Hou for constructive suggestions.


  1. 1.
    R. L. Fleischer, D. M. Dimidick, and H. A. Lipsitt (1989). Annu. Rev. Mater. Sci. 19, 231.CrossRefGoogle Scholar
  2. 2.
    A. Schnepf and H. Schnoekel (2001). Angew. Chem. Int. Ed. Engl. 40, 712.Google Scholar
  3. 3.
    O. P. Charkin, N. M. Klimenko, D. O. Charkin, et al. (2005). Russ. J. Inorg. Chem. 50, (Supply 1), 17.Google Scholar
  4. 4.
    R. Pal, L.-F. Cui, S. Bulusu, H.-J. Zhai, L.-S. Wang, and X. C. Zeng (2008). J. Chem. Phys. 128, 024305.CrossRefGoogle Scholar
  5. 5.
    X. Li and L. S. Wang (2002). Phys. Rev. B 65, 153404.CrossRefGoogle Scholar
  6. 6.
    E. B. Denis, A. W. Castleman, T. Morisato, and S. N. Khanna (2004). Science 304, 84.CrossRefGoogle Scholar
  7. 7.
    M. Akutsu, K. Koyasu, J. Atobe, N. Hosoya, K. Miyajima, M. Mitsui, and A. Nakajima (2006). J. Phys. Chem. A 110, 12073.CrossRefGoogle Scholar
  8. 8.
    K. Koyasu, M. Akutsu, J. Atobe, M. Mitsui, and A. Nakajima (2006). Chem. Phys. Lett. 421, 534.CrossRefGoogle Scholar
  9. 9.
    S. N. Khanna, C. Ashman, B. K. Rao, and P. Jena (2001). J. Chem. Phys. 114, 9792.CrossRefGoogle Scholar
  10. 10.
    Q. L. Lu, L. L. Chen, J. G. Wan, and G. H. Wang (2010). J. Comput. Chem. 31, 2804.CrossRefGoogle Scholar
  11. 11.
    M. Wang, X. W. Huang, Z. L. Du, and Y. C. Li (2009). Chem. Phys. Lett. 480, (4–6), 258.CrossRefGoogle Scholar
  12. 12.
    V. Kumar and Y. Kawazoe (2001). Phys. Rev. B 64, 115405.CrossRefGoogle Scholar
  13. 13.
    R. R. Zope and T. Baruah (2001). Phys. Rev. A 64, 053202.CrossRefGoogle Scholar
  14. 14.
    O. C. Thomas, W. J. Zheng, and K. H. Bowen Jr (2001). J. Chem. Phys. 114, 5514.CrossRefGoogle Scholar
  15. 15.
    P. Peng, G. F. Li, C. X. Zheng, S. C. Han, and R. S. Liu (2006). Sci. China Ser. E 49, (4), 385.CrossRefGoogle Scholar
  16. 16.
    J. Akola, H. Häkkinen, and M. Manninen (1998). Phys. Rev. B 58, 3601.CrossRefGoogle Scholar
  17. 17.
    J.-Y. Yi, D. J. Oh, and J. Bernhole (1990). Chem. Phys. Lett. 174, 461.CrossRefGoogle Scholar
  18. 18.
    L. D. Lloyd and R. L. Johnston (1998). Chem. Phys. 236, 107.CrossRefGoogle Scholar
  19. 19.
    C. H. Yao, B. Song, and P. L. Cao (2004). Phys. Rev. B 70, 195431.CrossRefGoogle Scholar
  20. 20.
    J. O. Joswig and M. Springborg (2003). Phys. Rev. B 68, 085408.CrossRefGoogle Scholar
  21. 21.
    X. Li, H. Wu, X. B. Wang, and L. S. Wang (1998). Phys. Rev. Lett. 81, 1909.CrossRefGoogle Scholar
  22. 22.
    K. J. Taylor, C. L. Pettiette, M. J. Graycraft, O. Chesnovsky, and R. E. Smalley (1988). Chem. Phys. Lett. 152, 347.CrossRefGoogle Scholar
  23. 23.
    B. K. Rao and P. Jena (1999). J Chem. Phys. 111, (5), 1890.CrossRefGoogle Scholar
  24. 24.
    D. M. P. Mingos (2015). Dalton Trans. 44, 6680.CrossRefGoogle Scholar
  25. 25.
    ADF2007.01, SCF, Theoretical chemistry, Vrije Universiteit: Amsterdam, 2007.Google Scholar
  26. 26.
    E. V. Lenthe and E. J. Baerends (2003). J. Comput. Chem. 24, 1142.CrossRefGoogle Scholar
  27. 27.
    A. D. Becke (1988). Phys. Rev. A 38, 3098.CrossRefGoogle Scholar
  28. 28.
    J. P. Perdew (1986). Phys. Rev. B 33, 8822.CrossRefGoogle Scholar
  29. 29.
    U. Ray, M. F. Jarrold, J. E. Bower, and J. S. Kraus (1989). J. Chem. Phys. 91, 2912.CrossRefGoogle Scholar
  30. 30.
    V. Kumar (1998). Phys. Rev. B 57, 8827.CrossRefGoogle Scholar
  31. 31.
    V. Kumar, S. Bhattacharjee, and Y. Kawazoe (2000). Phys. Rev. B 61, 8541.CrossRefGoogle Scholar
  32. 32.
    X. G. Gong and V. Kumar (1993). Phys. Rev. Lett. 70, 2078.CrossRefGoogle Scholar
  33. 33.
    S. Y. Yang, D. A. Drabold, D. A. Adams, and A. Sachdev (1993). Phys. Rev. B 47, 1567.CrossRefGoogle Scholar
  34. 34.
    L. J. Cheng and J. L. Yang (2013). J. Chem. Phys. 138, 141101.CrossRefGoogle Scholar
  35. 35.
    L. J. Cheng, X. Z. Zhang, B. K. Jin, and J. L. Yang (2014). Nanoscale 6, 12440.CrossRefGoogle Scholar
  36. 36.
    G. A. Fiete (2011). Physics 4, 30.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Jing Hengyi Honors CollegeHangzhou Normal UniversityHangzhouChina
  2. 2.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA
  3. 3.Department of PhysicsZhejiang UniversityHangzhouChina

Personalised recommendations