Journal of Cluster Science

, Volume 27, Issue 2, pp 733–744 | Cite as

Antioxidant and Anti-tyrosinase Activities of Palladium Nanoparticles Synthesized Using Saururus chinensis

  • Nagaraj Basavegowda
  • Kanchan Mishra
  • Yong Rok Lee
  • Sung Hong Kim
Original Paper


This paper reports the phytosynthesis of palladium nanoparticles (PdNPs) using a Saururus chinensis (S. chinensis) leaf extract, which is believed to act as a bioreductant and stabilizer. Ultraviolet/visible spectroscopy was performed to confirm the formation of PdNPs. Fourier transform infrared spectroscopy was performed to recognize the possible bioactive molecules, such as polyphenols and flavonoids present in the S. chinensis leaf extract responsible for the reduction and stabilization of PdNPs. X-ray diffraction revealed the crystallinity of the nanoparticles. The mean particle size and their elemental composition were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis (EDS). The PdNPs were spherical in shape with a mean size of ~4 nm. The EDS showed strong optical absorption peak at ~2.8 keV, confirmed the formation of PdNPs. The PdNPs exhibited moderate antioxidant and potent antityrosinase activities.

Graphical Abstract


Palladium nanoparticles Ultrasonication Saururus chinensis Antioxidant Anti-tyrosinase 



This study was supported by the Nano Material Technology Development Program of the Korean National Research Foundation (NRF) funded by the Korean Ministry of Education, Science, and Technology (2012M3A7B4049675). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2014R1A2A1A11052391) and Priority Research Centers Program (2014R1A6A1031189).


  1. 1.
    N. Basavegowda and Y. R. Lee (2013). Mater. Lett. 109, 31–33.CrossRefGoogle Scholar
  2. 2.
    M. Saravanan, A. K. Vemu, and S. K. Barik (2011). Colloid. Surf. B 88, 325–331.CrossRefGoogle Scholar
  3. 3.
    A. V. Kirthi, A. A. Rahuman, C. Jayaseelan, L. Karthik, S. Marimuthu, T. Santhoshkumar, J. Venkatesan, S.-K. Kim, G. Kumar, S. R. S. Kumar, and K. V. B. Rao (2012). Mater. Lett. 81, 69–72.CrossRefGoogle Scholar
  4. 4.
    B. Li, J. Lin, J. Lu, X. Su, and J. Li (2013). J. Opt. 15, 055005.CrossRefGoogle Scholar
  5. 5.
    N. Basavegowda, A. Idhayadhulla, and Y. R. Lee (2014). Mater. Sci. Eng. C 43, 58–64.CrossRefGoogle Scholar
  6. 6.
    N. Basavegowda, K. B. SomaiMagar, K. Mishra, and Y. R. Lee (2014). New J. Chem. 38, 5415–5420.CrossRefGoogle Scholar
  7. 7.
    N. Basavegowda, A. Idhayadhulla, and Y. R. Lee (2014). Ind. Crop. Prod. 52, 745–751.CrossRefGoogle Scholar
  8. 8.
    I. H. El-Sayed, X. Huang, and M. A. El-Sayed (2005). Nano Lett. 5, 829–834.CrossRefGoogle Scholar
  9. 9.
    M. S. Akhtar, J. Panwar, and Y. S. Yun (2013). ACS Sustain. Chem. Eng. 1, 591–602.CrossRefGoogle Scholar
  10. 10.
    A. K. Mittal, Y. Chisti, and U. C. Banerjee (2013). Biotechnol. Adv. 31, 346–356.CrossRefGoogle Scholar
  11. 11.
    F. Zaera (2013). Chem. Soc. Rev. 42, 2746–2762.CrossRefGoogle Scholar
  12. 12.
    A. J. Hickman and M. S. Sanford (2012). Nature 484, 177–185.CrossRefGoogle Scholar
  13. 13.
    Y. Lu, H. Zhu, W. Li, B. Hu, and S. Yu (2013). J. Mater. Chem. A 1, 3783–3788.CrossRefGoogle Scholar
  14. 14.
    S. Santra, P. Ranjan, P. Bera, P. Ghosh, and S. K. Mandal (2012). RSC Adv. 2, 7523–7533.CrossRefGoogle Scholar
  15. 15.
    S. Deng, J. Lei, Y. Huang, X. Yao, L. Ding, and H. Ju (2012). Chem. Commun. 48, 9159–9161.CrossRefGoogle Scholar
  16. 16.
    D. S. Shenya, D. Philip, and J. Mathew (2012). Spectrochim. Acta Part A 91, 35–38.CrossRefGoogle Scholar
  17. 17.
    A. Bankar, B. Joshi, A. R. Kumar, and S. Zinjarde (2010). Mater. Lett. 64, 1951–1953.CrossRefGoogle Scholar
  18. 18.
    M. Sathishkumar, K. Sneha, I. S. Kwak, J. Mao, S. J. Tripathy, and Y. S. Yun (2009). J. Hazard Mater. 171, 400–404.CrossRefGoogle Scholar
  19. 19.
    B. Huang, J. Zhang, J. Hou, and C. Chen (2003). Free Radic. Biol. Med. 35, 805–813.CrossRefGoogle Scholar
  20. 20.
    M. Khan, M. Kuniyil, S. F. Adil, A. Al-Warthan, W. Tremel, M. N. Tahir, and M. R. H. Siddiqui (2014). Dalton Trans. 43, 9026–9031.CrossRefGoogle Scholar
  21. 21.
    W.-J. Tsai, C.-C. Shen, T.-H. Tsai, and L.-C. Lin (2014). J. Nat. Prod. 77, 125–131.CrossRefGoogle Scholar
  22. 22.
    V. L. Singleton and J. A. Rossi (1965). Am. J. Enol. Vitic. 16, 144–158.Google Scholar
  23. 23.
    G. Cefarelli, B. D’Abrosca, A. Fiorentino, A. Izzo, C. Mastellone, S. Pacifico, and V. Piscopo (2006). J Agric. Food Chem. 54, 803–809.CrossRefGoogle Scholar
  24. 24.
    M. M. Bradford (1976). Anal. Biochem. 72, 248–254.CrossRefGoogle Scholar
  25. 25.
    P. Dauthal and M. Mukhopadhyay (2013). Ind. Eng. Chem. Res. 52, 18131–18139.CrossRefGoogle Scholar
  26. 26.
    K.-I. Shimizu, T. Kubo, A. Satsuma, T. Kamachi, and K. Yoshizawa (2012). ACS Catal. 2, 2467–2474.CrossRefGoogle Scholar
  27. 27.
    P. Dauthal and M. Mukhopadhyay (2013). J. Nanopart. Res. 15, 1366–1376.CrossRefGoogle Scholar
  28. 28.
    C. H. Ramamurthy, M. Padma, I. D. M. Samadanam, R. Mareeswaran, A. Suyavaran, M. S. Kumar, K. Premkumar, and C. Thirunavukkarasu (2013). Colloid. Surf. B 102, 808–815.CrossRefGoogle Scholar
  29. 29.
    H. Kong, J. Yang, Y. Zhang, Y. Fang, K. Nishinari, and G. O. Phillips (2014). Int. J. Biol. Macromol. 65, 155–162.CrossRefGoogle Scholar
  30. 30.
    T. Santhoshkumar, A. A. Rahuman, C. Jayaseelan, G. Rajakumar, S. Marimuthu, A. V. Kirthi, K. Velayutham, J. Thomas, J. Venkatesan, and S.-K. Kim (2014). Asian Pac. J. Trop. Med. 7, 968–976.CrossRefGoogle Scholar
  31. 31.
    H. Muthukumar and M. Matheswaran (2015). ACS Sustain. Chem. Eng. 3, 3149–3156.CrossRefGoogle Scholar
  32. 32.
    D. Suresh, R. M. Shobharani, P. C. Nethravathi, M. A. P. Kumar, H. Nagabhushana, and S. C. Sharma (2015). Spectrochim. Acta A Mol. Biomol. Spectros. 141, 128–134.CrossRefGoogle Scholar
  33. 33.
    C. M. Aberg, T. Chen, A. Olumide, S. R. Raghavan, and G. F. Payne (2004). J. Agric. Food Chem. 52, 788–793.CrossRefGoogle Scholar
  34. 34.
    C. O. Tettey, P. C. Nagajyoth, S. E. Lee, A. Ocloo, T. N. MinhAn, T. V. M. Sreekanth, and K. D. Lee (2012). Int. J. Cosmet. Sci. 34, 150–154.CrossRefGoogle Scholar
  35. 35.
    N. Basavegowda, A. Idhayadhulla, and Y. R. Lee (2014). Mater. Lett. 129, 28–30.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nagaraj Basavegowda
    • 1
  • Kanchan Mishra
    • 1
  • Yong Rok Lee
    • 1
  • Sung Hong Kim
    • 2
  1. 1.School of Chemical EngineeringYeungnam UniversityGyeongsanRepublic of Korea
  2. 2.Analysis Research Division, Daegu CenterKorea Basic Science InstituteDaeguRepublic of Korea

Personalised recommendations