Journal of Cluster Science

, Volume 27, Issue 2, pp 775–789 | Cite as

Stabilities, Vibrational States and Hydrogen Bond Characteristics of Water Clusters

Original Paper


36 low-energy isomers of (H2O) n (n = 6–21) are optimized using ab initio methods. Their vibrational frequencies are calculated and the properties of hydrogen bond (H-bond) are analyzed. The structure of a water cluster is decided by the number and the strength of the H-bonds formed in the cluster. The H-bonds in the hexagonal rings are strongest but the clusters building up by the cubes and pentamers can form more H-bonds. When the energies are corrected by the zero point energy and the basis set superposition error, the H-bond strength is about 0.182 eV. The thermodynamic properties of water clusters are decided by the intermolecular vibrational states. Similar to the density of states of bulk ice, the intermolecular vibrational frequencies of the clusters are divided into two subbands, the lower frequencies correspond to the translational and the higher frequencies to librational modes. The vibrational frequencies of the clusters are more extended and shift to higher frequencies. The O–H stretching band of water clusters is the fingerprint of the structures and it also reflects the strength of the H-bonds that the donor O–H forms. Analysis on the stretching frequencies shows that the strength of the H-bonds depends mainly on the characteristic of the donor molecule. The H-bonds formed by DAA as H-donor are strongest and the bonds formed by DDA are weakest.


(H2O)n (n = 6–21) Stabilities Vibrational states H-bond characteristics 



This work is financially supported by the National Science Foundation of China (Grant No. 11164024, Grant No. 11547253) and the Natural Science Foundation of Gansu Province (Grant No. 11547253). We also thank Gansu and Shenzhen Computing Center for computation resources.

Supplementary material

10876_2016_971_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1330 kb)


  1. 1.
    Y. Maréchal (ed.) The Hydrogen Bond and the Water Molecule (Elsevier, Amsterdam, 2007), pp. 195–197.CrossRefGoogle Scholar
  2. 2.
    K. Muller-Dethlefs and P. Hobza (2000). Chem. Rev. 100, 143.CrossRefGoogle Scholar
  3. 3.
    B. Hartke (2002). Angew. Chem. Int. Ed. 41, 1468.CrossRefGoogle Scholar
  4. 4.
    K. Liu, J. D. Cruzan, and R. J. Saykally (1996). Science 271, 929.CrossRefGoogle Scholar
  5. 5.
    N. Pugliano and R. Saykally (1992). Science 257, 1937.CrossRefGoogle Scholar
  6. 6.
    R. N. Pribble and T. S. Zwier (1994). Science 265, 75.CrossRefGoogle Scholar
  7. 7.
    F. Huisken, M. Kaloudis, and A. Kulcke (1996). J. Chem. Phys. 104, 17.CrossRefGoogle Scholar
  8. 8.
    J. D. Cruzan, L. B. Braly, K. Liu, and R. J. Saykally (1996). Science 271, 59.CrossRefGoogle Scholar
  9. 9.
    M. R. Viant, J. D. Cruzan, M. G. Brown, and R. J. Saykally (1997). J. Phys. Chem. A101, 9032.CrossRefGoogle Scholar
  10. 10.
    K. Kim, K. D. Jordan, and T. S. Zwier (1994). J. Am. Chem. Soc. 116, 11568.CrossRefGoogle Scholar
  11. 11.
    K. Liu, M. B. Brown, C. Carter, and R. J. Saykally (1996). Nature 381, 501.CrossRefGoogle Scholar
  12. 12.
    K. Liu, M. B. Brown, and R. J. Saykally (1997). J. Phys. Chem. A101, 8995.CrossRefGoogle Scholar
  13. 13.
    K. Nauta and R. E. Miller (2000). Science 287, 293.CrossRefGoogle Scholar
  14. 14.
    J. Brudermann, M. Melzer, U. Buck, J. K. Kazimirski, J. Sadlej, and V. Bush (1999). J. Chem. Phys. 110, 10649.CrossRefGoogle Scholar
  15. 15.
    W. B. Blanton, S. W. Gordon-Wylie, G. R. Clark, and K. D. Jordan (1999). J. Am. Chem. Soc. 121, 3551.CrossRefGoogle Scholar
  16. 16.
    U. Buck, I. Ettischer, M. Melzer, V. Buch, and J. Sadlej (1998). Phys. Rev. Lett. 80, 2578.CrossRefGoogle Scholar
  17. 17.
    C. J. Gruenloh, J. R. Carney, C. A. Arrington, T. S. Zwier, S. Y. Fredericks, and K. D. Jordan (1997). Science 276, 1678.CrossRefGoogle Scholar
  18. 18.
    C. C. Pradzynski, C. W. Dierking, F. Zurheide, R. M. Forck, U. Buck, T. Zeuch, and S. S. Xantheas (2014). Phys. Chem. Chem. Phys. 16, 26691.CrossRefGoogle Scholar
  19. 19.
    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, and R. W. Impey (1983). J. Chem. Phys. 79, 926.CrossRefGoogle Scholar
  20. 20.
    T. James, D. J. Wales, and J. Hernández-Rojas (2005). Chem. Phys. Lett. 415, 302.CrossRefGoogle Scholar
  21. 21.
    C. J. Burnham and S. S. Xantheas (2002). J. Chem. Phys. 116, 5115.CrossRefGoogle Scholar
  22. 22.
    D. J. Wales and M. P. Hodges (1998). Chem. Phys. Lett. 286, 65.CrossRefGoogle Scholar
  23. 23.
    B. Hartke (2000). Phys. Chem. 214, 1251.Google Scholar
  24. 24.
    B. Hartke (2003). Phys. Chem. Chem. Phys. 5, 275.CrossRefGoogle Scholar
  25. 25.
    H. Kabrede and R. Hentschke (2003). J. Phys. Chem. B107, 3914.CrossRefGoogle Scholar
  26. 26.
    J. K. Kazimirski and V. Buch (2003). J. Phys. Chem. A 107, 9762.CrossRefGoogle Scholar
  27. 27.
    C. Tsai and K. Jordan (1993). J. Phys. Chem. 97, 5208.CrossRefGoogle Scholar
  28. 28.
    H. Kabrede (2006). Chem. Phys. Lett. 430, 336.CrossRefGoogle Scholar
  29. 29.
    H. Takeuchi (2008). J. Chem. Inf. Model. 48, 2226.CrossRefGoogle Scholar
  30. 30.
    S. Kazachenko and A. J. Thakkar (2009). Chem. Phys. Lett. 476, 120.CrossRefGoogle Scholar
  31. 31.
    F. Y. Li, Y. Liu, L. Wang, J. J. Zhao, and Z. Chen (2012). Theor. Chem. Acc. 131, 1163.CrossRefGoogle Scholar
  32. 32.
    C. Lee, H. Chen, and G. Fitzgerald (1995). J. Chem. Phys. 102, 1266.CrossRefGoogle Scholar
  33. 33.
    J. K. Gregory and D. C. Clary (1996). J. Phys. Chem. 100, 18014.CrossRefGoogle Scholar
  34. 34.
    J. Kim and K. S. Kim (1998). J. Chem. Phys. 109, 5886.CrossRefGoogle Scholar
  35. 35.
    J. M. Pedulla, K. Kim, and K. D. Jordan (1998). Chem. Phys. Lett. 291, 78.CrossRefGoogle Scholar
  36. 36.
    H. M. Lee, S. B. Suh, J. Y. Lee, P. Tarakeshwar, and K. S. Kim (2000). J. Chem. Phys. 112, 9759.CrossRefGoogle Scholar
  37. 37.
    H. M. Lee, S. B. Suh, and K. S. Kim (2001). J. Chem. Phys. 114, 10749.CrossRefGoogle Scholar
  38. 38.
    S. Maheshwary, N. Patel, N. Sathyamurthy, A. D. Kulkarni, and S. R. Gadre (2001). J. Phys. Chem. A105, 10525.CrossRefGoogle Scholar
  39. 39.
    G. S. Fanourgakis, E. Aprà, and S. S. Xantheas (2004). J. Chem. Phys. 121, 2655.CrossRefGoogle Scholar
  40. 40.
    A. Lenz and L. Ojamae (2005). Phys. Chem. Chem. Phys. 7, 1905.CrossRefGoogle Scholar
  41. 41.
    A. Lagutschenkov, G. S. Fanourgakis, G. Niedner-Schatteburg, and S. S. Xantheas (2005). J. Chem. Phys. 122, 194310.CrossRefGoogle Scholar
  42. 42.
    S. Bulusu, S. Yoo, E. Aprà, S. S. Xantheas, and X. C. Zeng (2006). J. Phys. Chem. A110, 11781.CrossRefGoogle Scholar
  43. 43.
    S. Yoo, E. Aprà, X. C. Zeng, and S. S. Xantheas (2010). J. Phys. Chem. Lett. 1, 3122.CrossRefGoogle Scholar
  44. 44.
    J. R. Hammond, N. Govind, K. Kowalski, J. Autschbach, and S. S. Xantheas (2009). J. Chem. Phys. 131, 214103.CrossRefGoogle Scholar
  45. 45.
    P. Qian, L. N. Lu, W. Song, and Z. Z. Yang (2009). Theor. Chem. Acc. 123, 487.CrossRefGoogle Scholar
  46. 46.
    R. M. Shields, B. Temelso, K. A. Archer, T. E. Morrell, and G. C. Shields (2010). J. Phys. Chem. A114, 11725.CrossRefGoogle Scholar
  47. 47.
    G. S. Fanourgakis, E. Aprà, W. A. Jong, and S. S. Xantheas (2005). J. Chem. Phys. 122, 134304.CrossRefGoogle Scholar
  48. 48.
    S. Yoo, and S. S. Xantheas. Chapter 21. J. Leszczynski (ed.) Handbook of Computational Chemistry, vol. 2, (Springer, New York, 2012).Google Scholar
  49. 49.
    J. C. Howard and G. S. Tschumper (2014). Wiley Interdisciplinary Reviews: Comput Mol Sci. 4, 169.Google Scholar
  50. 50.
    D. J. Wales, J. P. K. Doye, A. Dullweber, M. P. Hodges,F. Y. Naumkin, F. Calvo, J. Hernndez-Rojas, and T. F. Middleton, The Cambridge Cluster Database.
  51. 51.
    C. Møller and M. S. Plesset (1934). Phys. Rev. 46, 618.CrossRefGoogle Scholar
  52. 52.
    M. J. Frisch, G. W. Trucks and H. B. Schlegel et al (2004). Gaussian 03. Revision E.01. (Gaussian Inc., Wallingford).Google Scholar
  53. 53.
    C. Hock, M. Schmidt, R. Kuhnen, C. Bartels, L. Ma, H. Haberland, and B. V. Issendorff (2009). Phys. Rev. Lett. 103, 073401.CrossRefGoogle Scholar
  54. 54.
    M. Schmidt and B. V. Issendorff (2012). J. Chem. Phys. 136, 164307.CrossRefGoogle Scholar
  55. 55.
    D. D. Klug, E. Whalley, E. C. Svensson, J. H. Root, and V. F. Sears (1991). Phys. Rev. B 44, 841.CrossRefGoogle Scholar
  56. 56.
    A. Kumar, S. R. Gadre, X. Chenxia, X. Tianlv, S. R. Kirkb, and S. Jenkins (2015). Phys. Chem. Chem. Phys. 17, 15258.CrossRefGoogle Scholar
  57. 57.
    J. Contreras-García and W. Yang (2011). J. Phys. Chem. A 115, 12983.CrossRefGoogle Scholar
  58. 58.
    A. Nilsson, H. Ogasaware, M. Cavalleri, D. Nordlund, M. Nyberg, Ph Wemet, and L. G. M. Pettersson (2005). J. Chem. Phys. 122, 154506.CrossRefGoogle Scholar
  59. 59.
    B. Wang, M. Xin, X. Dai, R. Song, Y. Meng, J. Han, W. Jiang, Z. Wang, and R. Zhang (2015). Phys. Chem. Chem. Phys. 17, 2987.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Physics and Electronic EngineeringNorthwest Normal UniversityLanzhouPeople’s Republic of China

Personalised recommendations