Advertisement

Journal of Cluster Science

, Volume 27, Issue 2, pp 715–731 | Cite as

RETRACTED ARTICLE: First Principles Study of the Geometries, Relative Stabilities and Magnetic Properties of Bimetallic RhnOs (n = 1–9) Clusters

  • Abdelhamid Soltani
  • Wissam Bouderbala
  • Abdel-ghani Boudjahem
Original Paper

Abstract

Using the density functional theory (DFT), the geometries, relative stabilities and magnetic properties of bimetallic RhnOs (n = 1–9) clusters have been investigated. The relative stability was analyzed by examining the binding energy, fragmentation energy, second-order differences of energies and HOMO–LUMO energy gaps. The obtained results indicate that RhOs, Rh3Os, Rh5Os and Rh7Os clusters are more stable than their neighboring clusters. In addition, the doping of the Os atom enhanced the stability of the Rh clusters. The chemical hardness and chemical potential show that RhOs cluster is less reactive, indicating that RhOs cluster is the most stable one among all the clusters. The magnetic properties calculations exhibited that total magnetic moments come mostly from the Rh atoms for RhnOs (n = 3–9) clusters, while the contribution of the Os atom is observed for RhOs and Rh2Os clusters. In addition, the d orbitals plays an important role in the magnetic moments of the RhnOs clusters.

Keywords

DFT RhnOs clusters Relative stability Magnetic properties 

Notes

Acknowledgments

The authors would like to acknowledge Pr. Abdaoui Mohammed (Director of Applied Chemistry Laboratory).

References

  1. 1.
    G. Schmid (1992). Chem. Rev. 92, 1709.CrossRefGoogle Scholar
  2. 2.
    L. N. Lewis (1993). Chem. Rev. 93, 2693.CrossRefGoogle Scholar
  3. 3.
    X. S. Xu, S. Y. Yin, R. Moro, and W. A. de Heer (2005). Phys. Rev. Lett. 95, 237209.CrossRefGoogle Scholar
  4. 4.
    E. K. Parks, T. D. Klots, and S. J. Riley (1990). J. Chem. Phys. 92, 3813.CrossRefGoogle Scholar
  5. 5.
    W. P. Halperin (1998). Rev. Mod. Phys. 58, 533.CrossRefGoogle Scholar
  6. 6.
    A. Soltani and A. Boudjahem (2014). Comput. Theor. Chem. 1047, 6.CrossRefGoogle Scholar
  7. 7.
    T. Yonezawa, K. Imamura, and N. Kimizuka (2001). Langmuir. 17, 4701.CrossRefGoogle Scholar
  8. 8.
    J. Y. Zhang, Q. Fang, A. J. Kenyon, and I. W. Boyd (2003). Appl. Surf. Sci. 208–209, 364.Google Scholar
  9. 9.
    C. D. Dong and X. G. Gong (2008). Phys. Rev. B 78, 020409.CrossRefGoogle Scholar
  10. 10.
    T. Teranishi and M. Miyake (1998). Chem. Mater. 10, 594.CrossRefGoogle Scholar
  11. 11.
    K. R. Gopidas, J. M. Whitesell, and M. A. Fox (2003). Nano. Lett. 3, 1757.CrossRefGoogle Scholar
  12. 12.
    K. B. Sidhpuria, H. A. Patel, P. A. Parikh, P. Bahadur, H. C. Bajaj, and R. V. Jasra (2009). Appl. Clay. Sci. 42, 386.CrossRefGoogle Scholar
  13. 13.
    A. Sanchez, M. Fang, A. Ahmed, and R. A. Sanchez-Dolgado (2014). Appl. Catal. A-Gen. 477, 117.CrossRefGoogle Scholar
  14. 14.
    C. H. Campos, E. Rosenberg, J. L. Fierro, B. F. Urbano, B. L. Rivas, C. C. Torres, and P. Reyes (2015). Appl. Catal. A-Gen. 489, 280.CrossRefGoogle Scholar
  15. 15.
    A. Behr, Y. Brunsch, and A. Lux (2012). Tetrahedron. Lett. 53, 2680.CrossRefGoogle Scholar
  16. 16.
    A. J. Bruss, M. A. Gelesky, G. Machado, and J. Dupont (2006). J. Mol. Catal. A: Chem. 252, 212.CrossRefGoogle Scholar
  17. 17.
    Y. Izumi, K. Konishi, M. Tsukahara, D. M. Obaid, and K. I. Aika (2007). J. Phys. Chem. C 111, 10073.CrossRefGoogle Scholar
  18. 18.
    D. Han, X. Li, H. Zhang, Z. Liu, G. Hu, and C. Li (2008). J. Mol. Catal. A: Chem. 283, 15.CrossRefGoogle Scholar
  19. 19.
    T. J. Yoon, J. I. Kim, and J. K. Lee (2003). Inorg. Chim. Acta. 345, 228.CrossRefGoogle Scholar
  20. 20.
    A. J. Cox, J. G. Louderback, and L. A. Bloomfield (1993). Phys. Rev. Lett. 71, 923.CrossRefGoogle Scholar
  21. 21.
    R. D. Adams and X. Qu (1995). Organometallics 14, 4167.CrossRefGoogle Scholar
  22. 22.
    C.-T. Au, C.-F. Ng, and M.-S. Liao (1999). J. Catal. 185, 12.CrossRefGoogle Scholar
  23. 23.
    T. Zoberbier, et al. (2012). J. Am. Chem. Soc. 134, 3073.CrossRefGoogle Scholar
  24. 24.
    T. W. Chamberlain, T. Zoberbier, J. Biskupek, A. Botos, U. Kaiser, and A. N. Khlobystov (2012). Chem. Sci. 3, 1919.CrossRefGoogle Scholar
  25. 25.
    F. M. Mendes and M. Schmal (1997). Appl. Catal. A-Gen. 163, 153.CrossRefGoogle Scholar
  26. 26.
    A. Trunschke, H. Ewald, D. Gutschick, H. Miessner, M. Skupin, B. Walther, and H. C. Bottcher (1989). J. Mol. Catal. 56, 95.CrossRefGoogle Scholar
  27. 27.
    X. Yang, D. Chen, S. Liao, H. Song, Y. Li, Z. Fu, and Y. Su (2012). J. Catal. 291, 36.CrossRefGoogle Scholar
  28. 28.
    S. Dennler, J. Morillo, and G. M. Pastor (2003). Surf. Sci. 532–535, 334.CrossRefGoogle Scholar
  29. 29.
    J. H. Mokkath and G. M. Pastor (2012). Phys. Rev. B 85, 054407.CrossRefGoogle Scholar
  30. 30.
    A. K. Srivastava and N. Misra (2014). Comput. Theor. Chem. 1047, 1.CrossRefGoogle Scholar
  31. 31.
    J. Lv, X. Bai, J. F. Jia, X. H. Xu, and H. S. Wu (2012). Physica B. 407, 14.CrossRefGoogle Scholar
  32. 32.
    J. Lv, F. Q. Zhang, X. H. Xu, and H. S. Wu (2009). Chem. Phys. 363, 65.CrossRefGoogle Scholar
  33. 33.
    J. X. Yang, C. F. Wei, and J. J. Guo (2010). Physica. B 405, 4892.CrossRefGoogle Scholar
  34. 34.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc. Wallingford CT, 2009.Google Scholar
  35. 35.
    Y. Zhao and D. G. Truhlar (2006). J. Chem. Phys. 125, 194101.CrossRefGoogle Scholar
  36. 36.
    W. J. Stevens, H. Basch, and M. Krauss (1984). J. Chem. Phys 81, 6026.CrossRefGoogle Scholar
  37. 37.
    N. S. Venkataramanan (2008). J. Mol. Struct. Theochem 856, 9.CrossRefGoogle Scholar
  38. 38.
    J. Du, H. Wang, and G. Jiang (2007). J. Mol. Struct. Theochem 817, 47.CrossRefGoogle Scholar
  39. 39.
    W. Bouderbala, A. Boudjahem, and A. Soltani (2014). Mol. Phys. 112, 1789.CrossRefGoogle Scholar
  40. 40.
    F. A. Cotton, A. R. Chakravarty, D. A. Tocher, and T. A. Stephenson (1984). Inorg. Chim. Acta. 87, 115.CrossRefGoogle Scholar
  41. 41.
    C. D. Tait, J. M. Garner, J. P. Collman, A. P. Sattelberger, and W. H. Woodruff (1989). J. Am. Chem. Soc. 111, 9072.CrossRefGoogle Scholar
  42. 42.
    M. D. Morse (1986). Chem. Rev. 86, 1049.CrossRefGoogle Scholar
  43. 43.
    Z. Wu, B. Han, Z. Dai, and P. Jin (2005). Chem. Phys. Lett. 403, 367.CrossRefGoogle Scholar
  44. 44.
    J. Du, X. Sun, and H. Wang (2008). Int. J. Quant. Chem. 108, 1505.CrossRefGoogle Scholar
  45. 45.
    K. Takahashi, S. Isobe, and S. Ohnuki (2013). Chem. Phys. Lett 555, 26.CrossRefGoogle Scholar
  46. 46.
    K. A. Gingerich and D. L. Cocke (1972). J. Chem. Soc. Chem. Commun. 1, 536.CrossRefGoogle Scholar
  47. 47.
    H. Wang, H. Haouari, R. Craig, Y. Liu, J. R. Lombardi, and D. M. Lindsay (1997). J. Chem. Phys. 106, 2101.CrossRefGoogle Scholar
  48. 48.
    B. V. Reddy, S. K. Nayak, S. N. Khanna, B. K. Rao, and P. Jena (1999). Phys. Rev. B 59, 5214.CrossRefGoogle Scholar
  49. 49.
    C. H. Chien, E. Blaisten-Barojas, and M. R. Pederson (1998). Phys. Rev. A 58, 2196.CrossRefGoogle Scholar
  50. 50.
    Y. J. Xian, W. Cheng-Fu, and G. Jian-Jun (2010). Physica. B 405, 4892.CrossRefGoogle Scholar
  51. 51.
    M. R. Beltrán, F. B. Zamudio, V. Chauhan, P. Sen, H. Wang, Y. J. Ko, and K. Bowen (2013). Eur. Phys. J. D 67, 63.CrossRefGoogle Scholar
  52. 52.
    A. Soltani, A. Boudjahem, and M. Bettahar (2015). Int. J. Quantum. Chem.. doi: 10.1002/qua.25038.Google Scholar
  53. 53.
    M. X. Chen and X. H. Yan (2008). J. Chem. Phys. 128, 174305.CrossRefGoogle Scholar
  54. 54.
    R. G. Parr and W. Yang Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Abdelhamid Soltani
    • 1
  • Wissam Bouderbala
    • 1
  • Abdel-ghani Boudjahem
    • 1
  1. 1.Nanomaterials Chemistry GroupUniversity of GuelmaGuelmaAlgeria

Personalised recommendations