Journal of Cluster Science

, Volume 27, Issue 4, pp 1081–1096 | Cite as

BN Nanotube Serving as a Gas Chemical Sensor for N2O by Parallel Electric Field

  • Mohammad T. Baei
  • A. S. Ghasemi
  • E. Tazikeh Lemeski
  • Alireza Soltani
  • Niloofar Gholami


Density functional theory calculations were performed to understand the electronic properties of C24, B12N12, B12P12, and (6, 0) BNNT interacted with N2O molecule in the presence and absence of an external electric field using the B3LYP method and 6-31G** basis set. The adsorption of N2O from O-side on the surface of (6, 0) BNNT has high sensitivity in comparison with B12N12 nano-cage. The adsorption energy of N2O (O-side) on the sidewalls of B12N12 and BNNT in the presence of an electric field are −21.01 and −15.48 kJ mol−1, respectively. Our results suggest that in the presence of an electric field, the B12N12 nano-cage is the more energetically notable upon the N2O adsorption than (6, 0) BNNT, C24, and B12P12. Whereas, our results indicate that the electronic property of BNNT is more sensitive to N2O molecule at the presence of an electric field than B12N12 nano-cage. It is anticipated that BNNT could be a favorable gas sensor for the detection of N2O molecule.


BN nanostructures N2Electric field Density functional theory 



We should thank the clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran.


  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162.CrossRefGoogle Scholar
  2. 2.
    R. T. Paine and C. K. Narula (1990). Chem. Rev. 90, 73.CrossRefGoogle Scholar
  3. 3.
    J. Beheshtian, A. A. Peyghan, Z. Bagheri, Kamfiroozi, Struct. Chem. doi:  10.1007/s11224-012-9970-9.
  4. 4.
    N. Krainara, F. Illas, and J. Limtrakul (2012). Chem. Phys. Lett. 537, 88.CrossRefGoogle Scholar
  5. 5.
    A. Rubio, J. Corkill, and M. Cohen (1994). Phys. Rev. B 49, 5081.CrossRefGoogle Scholar
  6. 6.
    T. Oku, T. Hirano, M. Kuno, T. Kusunose, K. Niihare, and K. Suganuma (2000). Mater. Sci. Eng. B 74, 206.CrossRefGoogle Scholar
  7. 7.
    T. Oku, M. Kuno, H. Kitahara, and I. Nartia (2001). Int. J. Inorg. Mater. 3, 597.CrossRefGoogle Scholar
  8. 8.
    A. Soltani, N. Ahmadian, A. Amirazami, A. Masoodi, E. Tazikeh Lemeski, and A. Varasteh Moradi (2012). Appl. Surf. Sci. 261, 262.CrossRefGoogle Scholar
  9. 9.
    A. Soltani, S. Ghafouri Raz, V. Joveini Rezaei, A. Dehno Khalaji, and M. Savar (2012). Appl. Surf. Sci. 263, 619.CrossRefGoogle Scholar
  10. 10.
    A. Soltani, M. T. Ramezani, H. Mighani, A. A. Pahlevani, and R. Mashkoor (2012). Appl. Surf. Sci. 259, 637.CrossRefGoogle Scholar
  11. 11.
    A. Soltani, N. Ahmadian, Y. Kanani, A. Dehno Khalaji, and H. Mighani (2012). Appl. Surf. Sci. 258, 9536.CrossRefGoogle Scholar
  12. 12.
    J. Beheshtian, Z. Bagheri, M. Kamfiroozi, and A. Peyghan (2011). Microelectron J. 42, 1400.CrossRefGoogle Scholar
  13. 13.
    A. V. Pokropivny (2006). Diam. Relat. Mater. 15, 1492.CrossRefGoogle Scholar
  14. 14.
    T. Oku, A. Nishiwaki, and I. Narita (2004). Sci. Technol. Adv. Mater. 5, 635.CrossRefGoogle Scholar
  15. 15.
    H. Wang (2010). Chin. J. Chem. 28, 1897.CrossRefGoogle Scholar
  16. 16.
    Y. Z. Lan, W. D. Cheng, D. S. Wu, X. D. Li, H. Zhang, Y.-J. Gong, J. Shen, and F.-F. Li (2005). J Mol. Struc. 730, 9.CrossRefGoogle Scholar
  17. 17.
    A. Hirsch, (Thieme, 1994).Google Scholar
  18. 18.
    T. H. Fang, T. H. Wang, D. M. Lu, and W. C. Lien (2008). Microelectron J. 39, 1600.CrossRefGoogle Scholar
  19. 19.
    F. Trani, M. Causa, S. Lettieri, A. Setaro, D. Ninno, V. Barone, and P. Maddalena (2009). Microelectron J. 40, 236.CrossRefGoogle Scholar
  20. 20.
    W. H. Moon, M. S. Son, and H. J. Hwang (2007). Appl. Surf. Sci. 253, 7078.CrossRefGoogle Scholar
  21. 21.
    D. Farmanzadeh and S. Ghazanfary (2009). Struct. Chem. 20, 709.CrossRefGoogle Scholar
  22. 22.
    C. Attaccalite, L. Wirtz, A. Marini, and A. Rubio (2007). Phys. Status Solidi B 244, 4288.CrossRefGoogle Scholar
  23. 23.
    Q. Yuan and Y.-P. Zhao (2009). Biomicrofluidics 3, 022411.CrossRefGoogle Scholar
  24. 24.
    Q. Yuan and Y.-P. Zhao (2009). J. Am. Chem. Soc. 131, 6374.CrossRefGoogle Scholar
  25. 25.
    M. T. Baei, A. Soltani, A. V. Moradi, and M. Moghimi (2011). Monatsh Chem. 142, 573.CrossRefGoogle Scholar
  26. 26.
    M. T. Baei, A. Soltani, A. V. Moradi, and E. Tazikeh Lemeski (2011). Comput. Theoret. Chem. 970, 30.CrossRefGoogle Scholar
  27. 27.
    K. H. Khoo, M. S. C. Mazzoni, and S. G. Louie (2004). Phys. Rev. B 69, 201401.CrossRefGoogle Scholar
  28. 28.
    G. Y. Guo, S. Ishibashi, T. Tamura, and K. Terakura (2007). Phys. Rev. B 75, 245403.CrossRefGoogle Scholar
  29. 29.
    M. Machado and S. Azevedo (2011). Eur. Phys. J. B 81, 121.CrossRefGoogle Scholar
  30. 30.
    M. Schmidt, et al. (1993). J. Comp. Chem. 14, 1347.CrossRefGoogle Scholar
  31. 31.
    M. Mirzaei and M. Yousefi (2012). Superlattic. Microstruct. 52, 612.CrossRefGoogle Scholar
  32. 32.
    A. Ahmadi Peyghan, N. Hadipour, and Z. Bagheri (2013). J. Phys. Chem. C 117, 2427.CrossRefGoogle Scholar
  33. 33.
    A. Soltani, M. T. Baei, E. Tazikeh Lemeski, and A. A. Pahlevani (2014). Superlattic. Microstruct. 75, 716.CrossRefGoogle Scholar
  34. 34.
    S. F. Boys and F. Bernardi (1970). Mol. Phys. 19, 553.CrossRefGoogle Scholar
  35. 35.
    R. G. Parr, L. Szentpaly, and S. Liu (1999). J. Am. Chem. Soc. 121, 1922.CrossRefGoogle Scholar
  36. 36.
    F. Tournus and J. C. Charlier (2005). Phys. Rev. B 71, 165421.CrossRefGoogle Scholar
  37. 37.
    T. Koopmans (1993). Physica 1, 104.CrossRefGoogle Scholar
  38. 38.
    J.-X. Zhao, B. Gao, Q.-H. Cai, X.-G. Wang, and X.-Z. Wang (2011). Theor. Chem. Acc. 129, 85.CrossRefGoogle Scholar
  39. 39.
    Z. Li and C.-Y. Wang (2006). Chem. Phys. 330, 417.CrossRefGoogle Scholar
  40. 40.
    A. Soltani, M. T. Baei, M. Ramezani Taghartapeh, E. Tazikeh Lemeski, and S. Shojaee (2015). Struct. Chem. 26, 685.CrossRefGoogle Scholar
  41. 41.
    A. Soltani, M. T. Baei, M. Mirarab, M. Sheikhi, and E. Tazikeh Lemeski (2014). J. Phys. Chem. Solids 75, 1099.CrossRefGoogle Scholar
  42. 42.
    E. N. C. Paura, W. F. da Cunha, J. B. L. Martins, G. M. Silva, L. F. Roncaratti, R. Gargano (2014) RSC doi:  10.1039/C4RA00432A.
  43. 43.
    D. Farmanzadeh and S. Ghazanfary (2014). Appl. Surf. Sci. 320, 391.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mohammad T. Baei
    • 1
  • A. S. Ghasemi
    • 2
  • E. Tazikeh Lemeski
    • 3
  • Alireza Soltani
    • 4
    • 5
  • Niloofar Gholami
    • 5
  1. 1.Department of Chemistry, Azadshahr BranchIslamic Azad UniversityAzadshahrIran
  2. 2.Department ChemistryPayame Noor UniversityTehranIran
  3. 3.Department of Chemistry, Gorgan BranchIslamic Azad UniversityGorganIran
  4. 4.Joints, Bones and Connective Tissue Research CenterGolestan University of Medical ScienceGorganIran
  5. 5.Young Researchers and Elite Club, Gorgan BranchIslamic Azad UniversityGorganIran

Personalised recommendations