Advertisement

Journal of Cluster Science

, Volume 27, Issue 2, pp 523–535 | Cite as

A Theoretical Study of the Water–Gas-Shift Reaction on Cu6TM (TM = Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au) Clusters

  • Zhaoru Cao
  • Ling Guo
  • Naying Liu
Original Paper

Abstract

We perform density-functional theory calculations to investigate the water–gas-shift (WGS) reaction on Cu6TM (TM = Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au) clusters through redox, carboxyl, and formate mechanisms, which correspond to CO* + O* → CO2 (g), CO* + OH* → COOH* → CO2 (g) + H*, CO* + H* + O* → CHO* + O* → HCOO** → CO2(g) + H* respectively. An energetic span model is used to estimate the efficiency of the three mechanisms of different Cu6TM. It finds that for groups 9 and 10, carboxyl mechanism is the predominant mechanism in the three. While for Cu6TM (Cu, Ag, Au), it finds that the formate mechanism form the TDI and TDTS. Furthermore, the turnover frequency calculations are done for every Cu6TM cluster. The results show that Cu6Co is the best catalyst for WGS reaction. Finally, to understand the high catalytic activity of the Cu6Co cluster, the nature of the interaction between adsorbate and substrate is also analyzed by the detailed electronic local density of states. These findings enrich the applications of Cu-based materials to the high activity catalytic field.

Keywords

ESM TOF calculations LDOS 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20603021), the Natural Science Foundation of Shanxi (Grant No. 2013011009-6), the High School 131 Leading Talent Project of Shanxi, Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province (Grant No. 105088, 2015537, WL2015CXCY-SJ-01) and Shanxi Normal University (SD2015CXXM-80, WL2015CXCY-YJ-18) and Teaching Reform Project of Shanxi Normal University (WL2015JGXM-YJ-13).

Supplementary material

10876_2015_945_MOESM1_ESM.docx (15 mb)
Supplementary material 1 (DOCX 15391 kb)

References

  1. 1.
    L. Y. Gan and Y. J. Zhao (2012). J. Phys. Chem. C. 116, 16089.CrossRefGoogle Scholar
  2. 2.
    D. Mendes, V. Chibante, A. Menes, and L. M. Madeira (2010). Ind. Eng. Chem. Res. 49, 11269.CrossRefGoogle Scholar
  3. 3.
    J. A. Rodriguez, S. Ma, P. Liu, J. Evans, and M. Pérez (2007). Science 318, 1757.CrossRefGoogle Scholar
  4. 4.
    A. A. Gokhale, J. A. Dumesic, and M. Mavrikakis (2008). J. Am. Chem. Soc. 130, 1402.CrossRefGoogle Scholar
  5. 5.
    C. S. Chen, Y. T. Lai, T. W. Lai, J. H. Wu, C. H. Chen, J. F. Lee, and H. M. Kao (2013). ACS. Catal. 3, 667.CrossRefGoogle Scholar
  6. 6.
    C. D. Zeinalipour-Yazdi and M. A. Efstathiou (2008). J. Phys. Chem. C. 112, 19030.CrossRefGoogle Scholar
  7. 7.
    L. R. Jie, C. H. Ling, J. S. Pon, L. F. Yi, and C. H. Tsung (2012). J. Phys. Chem. C. 116, 336.Google Scholar
  8. 8.
    P. Liu (2010). J. Chem. Phys. 133, 204705.CrossRefGoogle Scholar
  9. 9.
    S. K. Wu, R. J. Lin, S. M. Jang, H. L. Chen, S. M. Wang, and F. Y. Li (2014). J. Phys. Chem. C. 118, 298.CrossRefGoogle Scholar
  10. 10.
    A. B. Vidal and P. Liu (2012). Phys. Chem. Chem. Phys. 14, 16626.CrossRefGoogle Scholar
  11. 11.
    C. H. Lin, C. L. Chen, and J. H. Wang (2011). J. Phys. Chem. C. 115, 18582.CrossRefGoogle Scholar
  12. 12.
    A. A. Phatak, W. N. Delgass, F. H. Ribeiro, and W. F. Schneider (2009). J. Phys. Chem. C. 113, 7269.CrossRefGoogle Scholar
  13. 13.
    G. C. Wang and J. Nakamura (2010). J. Phys. Chem. Lett. 1, 3053.CrossRefGoogle Scholar
  14. 14.
    C. Vignatti, M. S. Avila, C. R. Apesteguía, and T. F. Garetto (2010). Int. J. Hydrogen. Energy. 35, 7302.CrossRefGoogle Scholar
  15. 15.
    H. J. Wei, C. L. Gomez, and R. J. Meyer (2012). Top. Catal. 55, 313.CrossRefGoogle Scholar
  16. 16.
    Y. Y. Chen, M. Dong, J. G. Wang, and H. J. Jiao (2012). J. Phys. Chem. C. 116, 25368.CrossRefGoogle Scholar
  17. 17.
    R. C. Catapan, A. M. Oliveira, Y. Chen, and D. G. Vlachos (2012). J. Phys. Chem. C. 116, 20281.CrossRefGoogle Scholar
  18. 18.
    D. H. Wells, W. N. Delgass, and K. T. Thomson (2002). J. Chem. Phys. 117, 10597.CrossRefGoogle Scholar
  19. 19.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K.Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, (2010) Gaussian 09, Revision C. 01, Gaussian Inc., Wallingford.Google Scholar
  20. 20.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.CrossRefGoogle Scholar
  21. 21.
    W. R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284.CrossRefGoogle Scholar
  22. 22.
    P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 299.CrossRefGoogle Scholar
  23. 23.
    S. Kozuch and S. Shaik (2010). Acc. Chem. Res. 44, 101.CrossRefGoogle Scholar
  24. 24.
    J. Greeley and M. Mavrikakis (2003). Surf. Sci. 540, 215.CrossRefGoogle Scholar
  25. 25.
    K. P. Huber, G. Herzberg (1979). Van Nostrand Reinhold, New York.Google Scholar
  26. 26.
    T. Seta, M. Yamamoto, M. Nishioka, and M. Sadakata (2003). J. Phys. Chem. A. 107, 962.CrossRefGoogle Scholar
  27. 27.
    G. H. Guvelioglu, P. Ma, X. He, R. C. Forrey, and H. Cheng (2005). Phys. Rev. Lett. 94, 026103.CrossRefGoogle Scholar
  28. 28.
    V. L. Mazalova, A. V. Soldatov, S. Adam, A. Yakovlev, T. Möller, and R. L. Johnston (2009). J. Phys. Chem. C. 113, 9086.CrossRefGoogle Scholar
  29. 29.
    J. H. Wu and F. Hagelberg (2006). J. Phys. Chem. A. 110, 5901.CrossRefGoogle Scholar
  30. 30.
    S. L. Han, X. L. Xue, X. C. Nie, H. Zhai, F. Wang, Q. Sun, Y. Jia, S. F. Li, and Z. X. Guo (2010). Phys. Lett. A. 374, 4324.CrossRefGoogle Scholar
  31. 31.
    L. Wang, D. Dong, W. Shi-Jian, and Z. Zheng-Quan (2015). J. Phys. Chem. Solids. 76, 10.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Chemistry and Material Science, School of Modern Arts and SciencesShanxi Normal UniversityLinfenChina

Personalised recommendations