Journal of Cluster Science

, Volume 27, Issue 1, pp 315–326 | Cite as

Synthesis and Characterization of Lead Molybdate Nanostructures with High Photocatalytic Activity Via Simple Co-precipitation Method

  • Sajad Ayni
  • Mohammad Sabet
  • Masoud Salavati-Niasari
Original Paper


In this study, lead molybdate (PbMoO4) nanostructures were synthesized successfully via a simple and fast co-precipitation method. A new lead precursor [pb(2-hydroxyacetophenone)]2 was used for synthesis of the product. It was seen that using lead complex led to create of very tiny structures that can be attributed its steric effect. Different parameters such as pH, surfactant kind and solvent were changed to study their effect on the product size and morphology. It was found each parameter can effect on the product shape and change particle size and morphology. Different analysis such as scanning electron microscopy, X-ray diffraction pattern, Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy were used to characterize the fabricated products. Also photocatalytic activity of the product was studied by UV–Visble spectroscopy and it was found that synthesized lead molybdate can act as photocatalyst under visible light range.


Nanostructures Lead molybdate Photocatalytic activity Co-precipitation Surfactant 



Authors are grateful to council of University of Kashan for providing financial support to undertake this work by Grant No. (159271/599).


  1. 1.
    J. Brito, A. L. Barbosa, A. Albornoz, F. Severino, and J. Laine (1994). Catal. Lett. 26, 329.CrossRefGoogle Scholar
  2. 2.
    R. Sundaram and K. S. Nagaraja (2004). Sens. Actuators B 101, 353.CrossRefGoogle Scholar
  3. 3.
    W. Xiao, J. S. Chen, C. M. Li, R. Xu, and X. W. Lou (2010). Chem. Mater. 22, 746.CrossRefGoogle Scholar
  4. 4.
    J. Liu, X. Huang, Y. Li, and Z. Li (2007). J. Mater. Chem. 17, 2754.CrossRefGoogle Scholar
  5. 5.
    Y. A. Hizhnyi and S. G. Nedilko (2003). J. Lumin. 102–103, 688.CrossRefGoogle Scholar
  6. 6.
    H. Alves, A. Hofstaetter, F. Leiter, B. K. Meyer, N. G. Romanov, R. Novotny, and M. V. Korzhik (2001). Radiat. Meas. 33, 641.CrossRefGoogle Scholar
  7. 7.
    J. A. Groenink and G. Blasse (1980). J. Solid State Chem. 32, 9.CrossRefGoogle Scholar
  8. 8.
    D. A. Spassky, S. N. Ivanov, V. N. Kolobanov, V. V. Mikhailin, V. N. Zemskov, B. I. Zadneprovski, and L. I. Potkin (2004). Radiat. Meas. 38, 607.CrossRefGoogle Scholar
  9. 9.
    H. Bernhardt and R. Schnell (1981). Phys. Status Solidi (a) 64, 207.CrossRefGoogle Scholar
  10. 10.
    A. Kudo, M. Steinberg, A. Bard, A. Campion, M. Fox, T. Mallouk, S. Webber, and J. White (1990). Catal. Lett. 5, 61.CrossRefGoogle Scholar
  11. 11.
    J. C. Sczancoski, M. D. R. Bomio, L. S. Cavalcante, M. R. Joya, P. S. Pizani, J. A. Varela, E. Longo, M. S. Li, and J. A. Andrés (2009). J. Phys. Chem. C 113, 5812.CrossRefGoogle Scholar
  12. 12.
    A. Phuruangrat, T. Thongtem, and S. Thongtem (2009). J. Cryst. Growth 311, 4076.CrossRefGoogle Scholar
  13. 13.
    A. Phuruangrat, T. Thongtem, and S. Thongtem (2010). Curr. Appl. Phys. 10, 342.CrossRefGoogle Scholar
  14. 14.
    J. Bi, L. Wu, Y. Zhang, Z. Li, J. Li, and X. Fu (2009). Appl. Catal. B 91, 135.CrossRefGoogle Scholar
  15. 15.
    R. P. Jia and Y. Q. Zhang (2010). Chin. Opt. Lett. 8, 1152.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sajad Ayni
    • 1
  • Mohammad Sabet
    • 2
  • Masoud Salavati-Niasari
    • 1
  1. 1.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran
  2. 2.Department of Chemistry, Faculty of ScienceVali-E-Asr University of RafsanjanRafsanjanIslamic Republic of Iran

Personalised recommendations