Skip to main content
Log in

Bacteria Generated Antibacterial Gold Nanoparticles and Potential Mechanistic Insight

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this article, industrially useful bacteria Bacillus megaterium (MTCC 2444) have been explored in the biosynthesis of gold nanoparticles for the first time. Different parameters including pH, temperature, biomass concentration have been studied for optimization of nanoparticle synthesis. Characterizations of nanoparticles have been carried out by UV–Vis spectroscopy, XRD, FTIR and HRTEM. The average size of the nanoparticles is found to be around 16 nm. Mechanistic studies indicate that a flavin-containing reductase is possibly involved in the biosynthesis process. To the best of our knowledge, this is for the first time the participation of flavin-containing reductase domain of cytochrome P450 BM3 of B. megaterium is demonstrated in the biosynthesis of nanoparticles. Extracellular biosynthesis of gold nanoparticles has also been demonstrated by using the cell-free-extract of bacterial biomass. Moreover, biosynthesized gold nanoparticles exhibit wide spectrum of antimicrobial activities against several multidrug resistant pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. Shi, J. I. Yeh, J. I. Zink, and A. E. Nel (2008). ACS Nano 2, 2121.

    Article  CAS  Google Scholar 

  2. N. G. K. L. A. Dykman (2011). Acta Nat. 03, 22.

    Google Scholar 

  3. K. Weintraub (2013). Nature 495, S14.

    Article  CAS  Google Scholar 

  4. G. Southam and T. J. Beveridge (1996). Geochimica et Cosmochimica Acta 60, 4369.

    Article  CAS  Google Scholar 

  5. B. Nair and T. Pradeep (2002). Cryst. Growth Design 2, 293.

    Article  CAS  Google Scholar 

  6. S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu (2007). Mater. Lett. 61, 3984.

    Article  CAS  Google Scholar 

  7. P. Gwynne (2013). Nature 495, S12.

    Article  CAS  Google Scholar 

  8. P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M. I. Khan, R. Kumar, and M. Sastry (2002). ChemBioChem 3, 461.

    Article  CAS  Google Scholar 

  9. A. Chauhan, S. Zubair, S. Tufail, A. Sherwani, M. Sajid, S. C. Raman, A. Azam, and M. Owais (2011). Int. J. Nanomed. 6, 2305.

    CAS  Google Scholar 

  10. M. I. Husseiny, M. A. El-Aziz, Y. Badr, and M. A. Mahmoud (2007). Spectrochimica Acta A 67, 1003.

    Article  CAS  Google Scholar 

  11. T. J. Beveridge and R. G. Murray (1980). J. Bacteriol. 141, 876.

    CAS  Google Scholar 

  12. P. S. Vary, R. Biedendieck, T. Fuerch, F. Meinhardt, M. Rohde, W. D. Deckwer, and D. Jahn (2007). Appl. Microbiol. Biotechnol. 76, 957.

    Article  CAS  Google Scholar 

  13. M. Saravanan, A. K. Vemu, and S. K. Barik (2011). Colloids Surf. B 88, 325.

    Article  CAS  Google Scholar 

  14. Institute CaLS (2012) Methods for dilution antimicrobial susceptibility testing for bacteria that grow aerobically. Approved Standard M07-A9.

  15. R. J. Lambert and J. Pearson (2000). J. Appl. Microbiol. 88, 784.

    Article  CAS  Google Scholar 

  16. U. K. Laemmli (1970). Nature 227, 680.

    Article  CAS  Google Scholar 

  17. A. M. Clemments, C. Muniesa, C. C. Landry, and P. Botella (2014). RSC Adv. 4, 29134.

    Article  CAS  Google Scholar 

  18. K. Kalishwaralal, V. Deepak, S. R. K. Pandian, and S. Gurunathan (2009). Bioresour. Technol. 100, 5356.

    Article  CAS  Google Scholar 

  19. A. Moores and F. Goettmann (2006). New J. Chem. 30, 1121.

    Article  CAS  Google Scholar 

  20. A. V. Zayats (2013). Nature 495, S7.

    Article  CAS  Google Scholar 

  21. S. H. Park, J. Y. Kang, D. H. Kim, T. Ahn, and C. H. Yun (2012). Biomol. Ther. 20, 562.

    Article  CAS  Google Scholar 

  22. Y. Cui, Y. Zhao, Y. Tian, W. Zhang, X. Lu, and X. Jiang (2012). Biomaterials 33, 2327.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dindyal Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, S., Das, B., Bosu, R. et al. Bacteria Generated Antibacterial Gold Nanoparticles and Potential Mechanistic Insight. J Clust Sci 26, 1707–1721 (2015). https://doi.org/10.1007/s10876-015-0869-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0869-7

Keywords

Navigation