Advertisement

Journal of Cluster Science

, Volume 26, Issue 5, pp 1451–1461 | Cite as

SERS Activities of Green Synthesized Silver Nanoparticles

  • M. R. Bindhu
  • V. G. Sathe
  • M. Umadevi
Original Paper

Abstract

Spherical silver nanoparticles with average particle size of 11 nm having surface plasmon resonance peak at 440 nm are synthesized using fruit extract of Ananas comosus as reducing agent. The bright circular spots in the selected area electron diffraction pattern and the peaks corresponding to (111), (200), (220) and (311) planes in the X-ray diffraction pattern were evident for the crystallinity of face centered cubic structured nanoparticles. The surface-enhanced Raman scattering (SERS) activities of prepared silver nanoparticles were found to be size-dependent, the smaller nanoparticles showing higher SERS enhancement. The orientation of the pyridine molecule on the silver surface can be deduced from ring stretching vibrations, the ring breathing mode, in-plane and out-of-plane vibrations and the SERS surface selection rule. The SERS spectrum indicates that the pyridine adsorbed on the silver surface in a stand-on orientation via its nitrogen lone pair electrons. It is used to indicate the advantage of this green method of preparing silver based SERS colloids.

Keywords

Ananas comosus Surface plasmon resonance Silver nanoparticles Surface-enhanced Raman scattering Pyridine 

Notes

Acknowledgments

The authors are thankful to DST-CURIE New Delhi, UGC-DAE-CSR Indore for financial assistance.

References

  1. 1.
    M. Umadevi, S. Shalini, and M. R. Bindhu (2012). Adv. Nat. Sci: Nanosci. Nanotechnol. 3, 025008, 1.Google Scholar
  2. 2.
    M. R. Bindhu, V. Sathe, and M. Umadevi (2013). Spectrochim. Acta A 115, 409.CrossRefGoogle Scholar
  3. 3.
    M. Umadevi, M. R. Bindhu, and V. Sathe (2013). J. Mater. Sci. Technol. 29, 317.CrossRefGoogle Scholar
  4. 4.
    M. Umadevi and M. R. Bindhu (2014). Spectrochim. Acta A 128, 37.CrossRefGoogle Scholar
  5. 5.
    M. R. Bindhu and M. Umadevi (2013). Spectrochim Acta A 101, 184.CrossRefGoogle Scholar
  6. 6.
    M. R. Bindhu and M. Umadevi (2014). J. Clust. Sci.. doi: 10.1007/s10876-013-0679-8.Google Scholar
  7. 7.
    M. R. Bindhu and M. Umadevi (2014). Mater. Lett. 120, 184.CrossRefGoogle Scholar
  8. 8.
    V. Santosh Nalage, V. Sidhanath Bhosale, and V. Sheshanath Bhosale (2011). ONJ 5, 78.Google Scholar
  9. 9.
    E. K. Nelson (1925). J. Am. Chem. Soc. 47, 1177.CrossRefGoogle Scholar
  10. 10.
    W. Li, Y. Guo, and P. Zhang (2010). J. Phys. Chem. C 114, 6413.CrossRefGoogle Scholar
  11. 11.
    V. Parashar, R. Parashar, B. Sharma, and A. C. Pandey (2009). Dig. J. Nanomater. Biostruct. 4, 45.Google Scholar
  12. 12.
    M. M. Ganesh Babu and P. Gunasekaran (2009). Colloids Surf. B 74, 191.CrossRefGoogle Scholar
  13. 13.
    S. L. Smitha, K. M. Nissamudeen, D. Philip, and K. G. Gopchandran (2008). Spectrochim. Acta A. 71, 186.CrossRefGoogle Scholar
  14. 14.
    C. F. Bohren and D. R. Huffman Adsorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
  15. 15.
    K. R. Brown, D. G. Walter, and M. Natan (2000). Chem. Mater. 12, 306.CrossRefGoogle Scholar
  16. 16.
    A. Irshad, Wani, A. Ganguly, J. Ahmed, and T. Ahmad (2011). Mat. Lett. 65, 520.CrossRefGoogle Scholar
  17. 17.
    A. Becheri, M. Durr, P. L. Nostro, and P. Baglioni (2008). J. Nanopart. Res. 10, 679.CrossRefGoogle Scholar
  18. 18.
    R. G. Newkome The Chemistry of Heterocyclic Compounds (Wiley, New York, 1984).Google Scholar
  19. 19.
    R. M. Silverstein and F. X. Webster Spectrometric Identification of Organic Compounds, 6th ed (Wiley, Asia, 2003).Google Scholar
  20. 20.
    G. Socrates Infrared and Raman Characteristics Group Frequencies Tables and Charts, 3rd ed (Wiley, Chichoster, 2001).Google Scholar
  21. 21.
    B. S. Yadav, I. Ali, P. Kumar, and P. Yadav (2007). Indian J Pure & App. Phys. 45, 979.Google Scholar
  22. 22.
    F. P. Urena, M. F. Gomez, J. J. L. Gonzalez, and E. M. Torres (2003). Spectrochim. Acta A 59, 2815.CrossRefGoogle Scholar
  23. 23.
    C. Y. Panicker, H. T. Varghese, D. Philip, and I. S. H. Nogueira (2006). Spectrochim. Acta A 64, 744.CrossRefGoogle Scholar
  24. 24.
    X. Y. Li, Q. J. Huang, V. I. Petrov, Y. T. Xie, Q. Luo, X. Yu, and Y. J. Yan (2005). J. Raman Spectrosc. 36, 555.CrossRefGoogle Scholar
  25. 25.
    M. Moskovits and D. P. D. Lella (1980). J. Chem. Phys. 73, 6068.CrossRefGoogle Scholar
  26. 26.
    J. A. Creighton in R. J. H. Clark and R. E. Hester (eds.), Advances in Spectroscopy, Spectroscopy of Surfaces, vol. 16 (Wiley, New York, 1988), p. 37.Google Scholar
  27. 27.
    M. Moskovits (1982). J. Chem. Phys. 77, 4408.CrossRefGoogle Scholar
  28. 28.
    V. Tiwari, T. Oleg, G. Darbha, W. Hardy, J. Singh, and P. Ray (2007). Chem. Phys. Lett. 446, 77.CrossRefGoogle Scholar
  29. 29.
    J. B. Jackson and N. J. Halas (2004). Proc. Natl. Acad. Sci. U.S.A. 101, 17930.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsMother Teresa Women’s UniversityKodaikanalIndia
  2. 2.UGC-DAE Consortium for Scientific ResearchIndoreIndia

Personalised recommendations