Advertisement

Journal of Cluster Science

, Volume 26, Issue 4, pp 1403–1411 | Cite as

A New Metal–Organic Framework Constructed from Trinuclear {Cd3} Clusters as Secondary Building Units

  • Hui-Yan Ma
  • Chang-Hua Su
  • Jie Yin
  • Yun-Wu Li
  • Xin Shao
Original Paper
  • 224 Downloads

Abstract

A novel metal–organic framework, {[H2N(CH3)2][Cd3(BTC)2(BTA)(H2O)2]·2H2O}n (1) (H3BTC = 1,3,5-benzenetricarboxylate, HBTA = 1H-Benzotriazolate), has been synthesized and characterized by elemental analysis, IR and single-crystal X-ray diffraction analysis. Compound 1 represents a new (3,3,6)-connected structural topology constructed by trinuclear {Cd3} clusters as secondary building units. Moreover, the luminescence properties of 1 have been well investigated.

Keywords

CdII-MOF Trinuclear cluster SBUs New topology Luminescence properties 

Notes

Acknowledgments

This work was financially supported by the NNSF of China (21403102, 51303076 and 51172102).

Supplementary material

10876_2014_822_MOESM1_ESM.doc (710 kb)
Supplementary material 1 (DOC 710 kb)

References

  1. 1.
    Y. F. Zeng, X. Hu, F. C. Liu, and X. H. Bu (2009). Chem. Soc. Rev. 38, 469.CrossRefGoogle Scholar
  2. 2.
    Y. Cui, S. J. Lee, and W. B. Lin (2003). J. Am. Chem. Soc. 125, 6014.CrossRefGoogle Scholar
  3. 3.
    J. R. Li, J. Sculley, and H. C. Zhou (2012). Chem. Rev. 112, 869.CrossRefGoogle Scholar
  4. 4.
    Q. Chen, Z. Chang, W. C. Song, H. Song, H. B. Song, T. L. Hu, and X. H. Bu (2013). Angew. Chem. Int. Ed. 52, 11550.CrossRefGoogle Scholar
  5. 5.
    D. Tian, Q. Chen, Y. Li, Y. H. Zhang, Z. Chang, and X. H. Bu (2014). Angew. Chem. Int. Ed. 53, 837.CrossRefGoogle Scholar
  6. 6.
    L. Hou, W. J. Shi, Y. Y. Wang, Y. Guo, C. Jin, and Q. Z. Shi (2011). Chem. Commun. 47, 5464.CrossRefGoogle Scholar
  7. 7.
    C. Y. Sun, C. Qin, C. G. Wang, Z. M. Su, S. Wang, X. L. Wang, G. S. Yang, K. Z. Shao, Y. Q. Lan, and E. B. Wang (2011). Adv. Mater. 23, 5629.CrossRefGoogle Scholar
  8. 8.
    Y. Q. Chen, G. R. Li, Z. Chang, Y. K. Qu, Y. H. Zhang, and X. H. Bu (2013). Chem. Sci. 4, 3678.CrossRefGoogle Scholar
  9. 9.
    L. Hou, L. N. Jia, W. J. Shi, Y. Y. Wang, B. Liu, and Q. Z. Shi (2013). Dalton Trans. 42, 3653.CrossRefGoogle Scholar
  10. 10.
    Y. Q. Lan, H. L. Jiang, S. L. Li, and Q. Xu (2011). Adv. Mater. 23, 5015.CrossRefGoogle Scholar
  11. 11.
    Y. J. Cui, Y. F. Yue, G. D. Qian, and B. L. Chen (2012). Chem. Rev. 112, 1126.CrossRefGoogle Scholar
  12. 12.
    M. Eddaoudi, D. Moler, H. L. Li, T. M. Reineke, M. O’Keeffe, and O. M. Yaghi (2001). Acc. Chem. Res. 34, 319.CrossRefGoogle Scholar
  13. 13.
    N. W. Ockwig, O. Delgado-Friedrichs, M. O’Keeffe, and O. M. Yaghi (2005). Acc. Chem. Res. 38, 176.CrossRefGoogle Scholar
  14. 14.
    M. O’keeffe, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi (2008). Acc. Chem. Res. 41, 1782.CrossRefGoogle Scholar
  15. 15.
    D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O’Keeffe, and O. M. Yaghi (2009). Chem. Soc. Rev. 38, 1257.CrossRefGoogle Scholar
  16. 16.
    Y. L. Bai, J. Tao, R. B. Huang, and L. S. Zheng (2008). Angew. Chem. Int. Ed. 47, 5344.CrossRefGoogle Scholar
  17. 17.
    Z. Q. Jiang, G. Y. Jiang, F. Wang, Z. Zhao, and J. Zhang (2012). Chem. Commun. 48, 3653.CrossRefGoogle Scholar
  18. 18.
    M. Du, C. P. Li, C. S. Liu, and S. M. Fang (2013). Coord. Chem. Rev. 257, 1282.CrossRefGoogle Scholar
  19. 19.
    G. P. Yang, L. Hou, X. J. Luan, B. Wu, and Y. Y. Wang (2012). Chem. Soc. Rev. 41, 6992.CrossRefGoogle Scholar
  20. 20.
    X. L. Zhao, F. L. Liu, L. L. Zhang, D. Sun, R. M. Wang, Z. Ju, D. Q. Yuan, and D. F. Sun (2014). Chem. Eur. J. 20, 649.CrossRefGoogle Scholar
  21. 21.
    Z. J. Lin, J. Lü, M. C. Hong, and R. Cao (2014). Chem. Soc. Rev. 43, 5867.CrossRefGoogle Scholar
  22. 22.
    L. T. Du, Z. Y. Lu, K. Y. Zheng, J. Y. Wang, X. Zheng, Y. Pan, X. Z. You, and J. F. Bai (2013). J. Am. Chem. Soc. 135, 562.CrossRefGoogle Scholar
  23. 23.
    S. S. Chen, M. Chen, S. Takamizawa, P. Wang, G. C. Lv, and W. Y. Sun (2011). Chem. Commun. 47, 4902.CrossRefGoogle Scholar
  24. 24.
    J. I. Feldblyum, M. Liu, D. W. Gidley, and A. J. Matzger (2011). J. Am. Chem. Soc. 133, 18257.CrossRefGoogle Scholar
  25. 25.
    S. T. Zheng, J. T. Bu, Y. F. Li, T. Wu, F. Zuo, P. Y. Feng, and X. H. Bu (2010). J. Am. Chem. Soc. 132, 17062.CrossRefGoogle Scholar
  26. 26.
    G. M. Sheldrick SHELXL97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, 1997).Google Scholar
  27. 27.
    G. M. Sheldrick SHELXS97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, 1997).Google Scholar
  28. 28.
    A. L. Spek PLATON, A Multipurpose Crystallographic Tool (Utrecht University, Utrecht, 2003).Google Scholar
  29. 29.
    V. A. Blatov TOPOS, A multipurpose Crystallochemical Analysis with the Program Package (Samara State University, Russia, 2004).Google Scholar
  30. 30.
    Reticular Chemistry Structure Resource (RCSR), http://rcsr.anu.edu.au/.
  31. 31.
    Y. Y. Qin, J. Zhang, Z. J. Li, L. Zhang, X. Y. Cao, and Y. G. Yao (2008). Chem. Commun. 44, 2532.CrossRefGoogle Scholar
  32. 32.
    M. Du, X. J. Jiang, and X. J. Zhao (2006). Inorg. Chem. 45, 3998.CrossRefGoogle Scholar
  33. 33.
    X. L. Qi, S. Y. Liu, R. B. Lin, P. Q. Liao, J. W. Ye, Z. H. Lai, Y. Y. Guan, J. P. Zhang, and X. M. Chen (2013). Chem. Commun. 49, 6864.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringLiaocheng UniversityLiaochengPeople’s Republic of China
  2. 2.School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell TechnologyLiaocheng UniversityLiaochengPeople’s Republic of China

Personalised recommendations