Journal of Cluster Science

, Volume 26, Issue 4, pp 1129–1142 | Cite as

Syntheses, Structures and Properties of Three New Trinuclear Nickel Clusters with (2-Hydroxy-4-methoxyphenyl)-phenyl-methanone

Original Paper


Three new nickel clusters [Ni3(hmpm)4(DMF)2(X)2]·Y (1, X = HCOO, Y = 0; 2, X = CH3COO; Y = C5H8; 3, X = F3CCOO, Y = 0.5H2O, Hhmpm = (2-hydroxy-4-methoxy-phenyl)-phenyl-methanone) have been prepared via solvothermal method. They were characterized by elemental analysis, IR, UV–Vis, fluorescence and X-ray single-crystal diffraction. All three compounds are defined as trinuclear clusters with three nickel atoms linked in line. Herein, we have used three different carboxylate radicals. The results indicate that the steric hindrance effects in carboxylate radicals do not influence the structures of the clusters. The magnetic investigation shows that complexes 13 exhibit a ferromagnetic coupling between NiII ions.


Trinuclear clusters Solvothermal method Steric hindrance Magnetic properties Fluorescence 



This work is financially supported by the National Natural Science Foundation of China (No. 21161006), and Program for Excellent Talents in Guangxi Higher Education Institutions (Gui Jiao Ren [2012]41).

Supplementary material

10876_2014_802_MOESM1_ESM.docx (166 kb)
Supplementary material 1 (DOCX 165 kb)


  1. 1.
    M. Fujita, A. Powell, and C. Creutz From the Molecular to the Nanoscale: Synthesis, Structure and Properties, vol. 7 (Elsevier, Oxford, 2004).Google Scholar
  2. 2.
    L. Bogani and W. Wernsdorfer (2008). Nat. Mater. 7, 179.CrossRefGoogle Scholar
  3. 3.
    C. J. Milios, R. Inglis, A. Vinslava, R. Bagai, W. Wernsdorfer, S. Parsons, S. P. Perlepes, G. Christou, and E. K. Brechin (2007). J. Am. Chem. Soc. 129, 12505.CrossRefGoogle Scholar
  4. 4.
    D. Gatteschi and R. Sessoli (2003). Angew. Chem. Int. Ed. 42, 268.CrossRefGoogle Scholar
  5. 5.
    A. M. Ako, V. Mereacre, Y. H. Lan, W. Wernsdorfer, R. Clérac, C. E. Anson, and A. K. Powell (2010). Inorg. Chem. 49, 1.CrossRefGoogle Scholar
  6. 6.
    G. Aromı, S. Parsons, W. Wernsdorfer, E. K. Brechin, and E. J. L. McInnes (2005). Chem. Commun. 5038.Google Scholar
  7. 7.
    P. J. Hagrman, D. Hagrman, and J. Zubieta (1999). Angew. Chem. Int. Ed. 38, 2638.CrossRefGoogle Scholar
  8. 8.
    T. Taguchi, W. Wernsdorfer, K. A. Abboud, and G. Christou (2010). Inorg. Chem. 49, 199.CrossRefGoogle Scholar
  9. 9.
    M. T. Gamer, Y. H. Lan, P. W. Roesky, A. K. Powell, and R. Clérac (2008). Inorg. Chem. 47, 6581.CrossRefGoogle Scholar
  10. 10.
    P. Alborés and E. Rentschler (2009). Angew. Chem. Int. Ed. 48, 9366.CrossRefGoogle Scholar
  11. 11.
    L. Yang, Q. P. Huang, C. L. Zhang, R. X. Zhao, and S. H. Zhang (2014). Supramol. Chem. 26, 81.CrossRefGoogle Scholar
  12. 12.
    S. H. Zhang, M. F. Tang, and C. M. Ge (2009). Z. Anorg. Allg. Chem. 635, 1442.CrossRefGoogle Scholar
  13. 13.
    W. Wang, H. Hai, S. H. Zhang, L. Yang, and C. L. Zhang (2014). J. Cluster Sci. 25, 357.CrossRefGoogle Scholar
  14. 14.
    S.-H. Zhang, N. Li, C. M. Ge, C. Feng, and L. F. Ma (2011). Dalton Trans. 40, 3000.CrossRefGoogle Scholar
  15. 15.
    L. F. Ma, L. Y. Wang, X. K. Huo, Y. Y. Wang, Y. T. Fan, J. G. Wang, and S. H. Chen (2008). Cryst. Grow. Des. 8, 620.CrossRefGoogle Scholar
  16. 16.
    S. H. Zhang, Y. L. Zhou, X. J. Sun, L. Q. Wei, M. H. Zeng, and H. Liang (2009). J. Solid State Chem. 182, 2991.CrossRefGoogle Scholar
  17. 17.
    M. Yoneya, T. Yamaguchi, S. Sato, and M. Fujita (2012). J. Am. Chem. Soc. 134, 14401.CrossRefGoogle Scholar
  18. 18.
    D. Fujita, K. Suzuki, S. Sato, M. Yagi-Utsumi, Y. Yamaguchi, N. Mizuno, T. Kumasaka, M. Takata, M. Noda, S. Uchiyama, K. Kato, and M. Fujita (2012). Nat. Commun. 3, 1093.CrossRefGoogle Scholar
  19. 19.
    S. Ulrich, A. Petitjean, and J. M. Lehn (2010). Eur. J. Inorg. Chem. 1913.Google Scholar
  20. 20.
    S. M. Biros, R. M. Yeh, and K. N. Raymond (2008). Angew. Chem. Int. Ed. 47, 6062.CrossRefGoogle Scholar
  21. 21.
    C. J. Brown, G. M. Miller, M. W. Johnson, R. G. Bergman, and K. N. Raymond (2011). J. Am. Chem. Soc. 133, 11964.CrossRefGoogle Scholar
  22. 22.
    R. E. P. Winpenny (2002). J. Chem. Soc., Dalton Trans. 1.Google Scholar
  23. 23.
    G. Aromí, A. R. Bell, M. Helliwell, J. Raftery, S. J. Teat, G. A. Timco, O. Roubeau, and R. E. P. Winpenny (2003). Chem. Eur. J. 9, 3024.CrossRefGoogle Scholar
  24. 24.
    P. Mukherjee and S. Mukherjee (2013). Acc. Chem. Res. 46, 2556.CrossRefGoogle Scholar
  25. 25.
    S. H. Zhang, Y. D. Zhang, H. H. Zou, J. J. Guo, H. P. Li, Y. Song, and H. Liang (2013). Inorg. Chim. Acta. 396, 119.CrossRefGoogle Scholar
  26. 26.
    G. M. Sheldrick (2008). Acta Cryst. A64, 112.CrossRefGoogle Scholar
  27. 27.
    A mixture of Ni(HCOOH)2·2H2O (0.184 g, 1 mmol), Hhmpm (0.228 g, 1 mmol), H2O (8 mL) with a pH adjusted to 7.5 by addition of triethylamine was poured into a Teflon-lined autoclave (15 mL) and then heated at 140°C for 3 days. Green crystals of a were collected by filtration, washed with water and dried in air. Phase pure crystals of a were obtained by manual separation (yield: 161.6 mg, ca. 63.1 % based on Hhmpm ligand). Crystal data for the mononuclear nickel complex a: C28H22NiO6 (Ni(hmpm)2), Mr = 1026.33 g∙mol−1, monoclinic, P21/c, a = 11.267(2), b = 10.496(2), c = 20.600(3) Å, β = 98.030(2)°, V = 2412.1(7) Å3, θ = 25.01°, λ = 0.71073 Å, T = 296(2) K, μ(Mo Kα) = 0.846 mm−1. 3339 reflections were collected of which 4254 were unique (Rint = 0.0303). The structure was solved by direct methods and refined by full-matrix least squares of F 2, R 1 = 0.1789. Max/min residual electron density 0.902/–0.998 e Å3 and the structure of (a) see Figure S1.Google Scholar
  28. 28.
    Y. Xiao, S. H. Zhang, G. Z. Li, Y. G. Wang, and C. Feng (2011). Inorg. Chim. Acta. 366, 39.CrossRefGoogle Scholar
  29. 29.
    K. O. Kongshaug and H. Fjellvåg (2003). Solid State Sci. 5, 303.CrossRefGoogle Scholar
  30. 30.
  31. 31.
    T. C. Higgs and C. J. Carrano (1997). Inorg. Chem. 36, 298.CrossRefGoogle Scholar
  32. 32.
    J. Cano, G. D. Munno, F. Lloret, and M. Julve (2000). Inorg. Chem. 39, 1611.CrossRefGoogle Scholar
  33. 33.
    R. Biswas, S. Mukherjee, P. Kar, and A. Ghosh (2012). Inorg. Chem. 51, 8150.CrossRefGoogle Scholar
  34. 34.
    M. Shebl (2014). Spectrochim. Acta A 117, 127.CrossRefGoogle Scholar
  35. 35.
    H. Naeimi and M. Moradian (2010). J. Coord. Chem. 63, 156.CrossRefGoogle Scholar
  36. 36.
    M. Shebl (2009). Spectrochim. Acta A 73, 313.CrossRefGoogle Scholar
  37. 37.
    K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed (Wiley, New York, 1997).Google Scholar
  38. 38.
    S. Mishra, S. Daniele, G. Ledoux, E. Jeanneau, and M. F. Joubert (2010). Chem. Commun. 46, 3756.CrossRefGoogle Scholar
  39. 39.
    L. E. Valenti, M. B. Paci, C. P. D. Pauli, and C. E. Giacomelli (2011). Anal. Biochem. 410, 118.CrossRefGoogle Scholar
  40. 40.
    S. Basak, S. Sen, S. Banerjee, S. Mitra, G. Rosair, and M. T. G. Rodriguez (2007). Polyhedron 26, 5104.CrossRefGoogle Scholar
  41. 41.
    B. Shafaatian, A. Soleymanpour, N. Kholghi Oskouei, B. Notash, and S. A. Rezvani (2014). Spectrochim. Acta A 128, 363.CrossRefGoogle Scholar
  42. 42.
    Y. Chen, X.-J. Zhao, X. Gan, and W.-F. Fu (2008). Inorg. Chim. Acta 361, 2335.CrossRefGoogle Scholar
  43. 43.
    D. Das, B. G. Chand, K. K. Sarker, J. Dinda, and C. Sinha (2006). Polyhedron 25, 2333.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of Chemistry and Bioengineering (Guangxi Key Laboratory of Environmental Friendly Electromagnetic Chemistry Function Materials)Guilin University of TechnologyGuilinPeople’s Republic of China
  2. 2.Department of Chemical Science and TechnologyKunming UniversityKunmingPeople’s Republic of China

Personalised recommendations