Journal of Cluster Science

, Volume 26, Issue 3, pp 1001–1010 | Cite as

Structural Features of Medium-Sized Ge n (n = 35, 40, 45, 50, 55 and 60) clusters

Original Paper


By performing extensive search of the “compressing liquid” strategy together with the “genetic algorithm” approach, at the level of tight-binding(TB) potential model, the low-lying isomers of medium-sized Ge n (n = 35, 40, 45, 50, 55 and 60) are achieved. The selected lower-energy candidates from TB calculations are then fully optimized by the accurate first-principles calculations, the best candidates are identified. We find that the best candidates of germanium clusters undergo a structural transition from the prolate shape to the spherical structure in our concerned size range. This just corresponds to the observation of germanium clusters in ion mobility experiments. Furthermore, we reveal that the vibration entropy contributed to the free energy of an isomer which is useful for understanding the stability of the cluster at finite temperatures. As a result, the stability of the low-lying candidates at zero temperature is maintained at finite temperatures. In addition, the size-dependent HOMO–LUMO gaps have been briefly discussed in this paper. Our findings should be useful for future experiment investigations.


Medium-sized germanium clusters Compressing liquid Genetic algorithm Structural evolution 



Thanks to the support of the education department of Jiangxi Province (Grant No. GJJ14252) and the Key Laboratory of Photoelectronic and Telecommunication of Jiangxi Province (Grant No. 2011012). C. Y. Ouyang is also supported by the “Gan-po talent 555” Project of Jiangxi Province. This work has been carried out at National Supercomputer Center in Tianjin, and the calculations are performed on TianHe-1 (A).


  1. 1.
    J. M. Hunter, J. L. Fye, M. F. Jarrold, and J. E. Bower (1994). Phys. Rev. Lett. 73, 2063.CrossRefGoogle Scholar
  2. 2.
    T. P. Martin and H. Schaber (1985). J. Chem. Phys. 83, 855.CrossRefGoogle Scholar
  3. 3.
    Truong Ba Tai and Minh Tho Nguyen (2011). J. Chem. Theory Comput. 7, 1119–1130.CrossRefGoogle Scholar
  4. 4.
    C. Jo and K. Lee (2000). J. Chem. Phys. 113, 7268.CrossRefGoogle Scholar
  5. 5.
    S. Bulusu, S. Yoo, and X. C. Zeng (2005). J. Chem. Phys. 122, 164305.CrossRefGoogle Scholar
  6. 6.
    S. Yoo and X. C. Zeng (2006). J. Chem. Phys. 124, 184309.CrossRefGoogle Scholar
  7. 7.
    J. Wang, G. Wang, and J. Zhao (2001). Phys. Rev. B 64, 205411.CrossRefGoogle Scholar
  8. 8.
    L. Wang and J. Zhao (2008). J. Chem. Phys. 128, 024302.CrossRefGoogle Scholar
  9. 9.
    L. Z. Zhao, W. C. Lu, W. Qin, Q. J. Zang, C. Z. Wang, and K. M. Ho (2008). Chem. Phy. Lett. 455, 225.CrossRefGoogle Scholar
  10. 10.
    L. Z. Zhao, W. C. Lu, and W. Qin (2008). J. Phys. Chem. A 112, 5815.CrossRefGoogle Scholar
  11. 11.
    W. Qin, W. C. Lu, Q. J. Zang, L. Z. Zhao, G. J. Chen, C. Z. Wang, and K. M. Ho (2010). J. Chem. Phys. 132, 214509.CrossRefGoogle Scholar
  12. 12.
    W. Qin, W. C. Lu, L. Z. Zhao, Q. J. Zang, G. J. Chen, C. Z. Wang, and K. M. Ho (2009). J. Chem. Phys. 131, 124507.CrossRefGoogle Scholar
  13. 13.
    P. F. Li, Y. G. Zhang, X. L. Lei, and B. C. Pan (2012). Acta Phys Sin 53, 576.Google Scholar
  14. 14.
    P. F. Li and B. C. Pan (2012). J. phys. Condensed matter 24, 305802.CrossRefGoogle Scholar
  15. 15.
    R. L. Zhou, L. Y. Zhao, and B. C. Pan (2009). J. Chem. Phys. 131, 034108.CrossRefGoogle Scholar
  16. 16.
    R. L. Zhou and B. C. Pan (2007). Phys. Lett. A 368, 396.CrossRefGoogle Scholar
  17. 17.
    R. L. Zhou and B. C. Pan (2008). J. Chem. Phys. 128, 234302.CrossRefGoogle Scholar
  18. 18.
    Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.Google Scholar
  19. 19.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  20. 20.
    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.CrossRefGoogle Scholar
  21. 21.
    P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 270.CrossRefGoogle Scholar
  22. 22.
    B. Liu, Z. Y. Lu, B. C. Pan, C. Z. Wang, and K. M. Ho (1998). J. Chem. Phys. 109, 9401.CrossRefGoogle Scholar
  23. 23.
    K. M. Ho, A. A. Shvartsburg, B. C. Pan, Z. Y. Lu, C. Z. Wang, J. G. Wacker, J. L. Fye, and M. F. Jarrold (1998). Nature 392, 582.CrossRefGoogle Scholar
  24. 24.
    S. Yoo, J. Zhao, J. Wang, and X. C. Zeng (2004). J. Am. Chem. Soc. 126, 13845.CrossRefGoogle Scholar
  25. 25.
    S. Ma and G. Wang (2006). J. Molecular Structure: THEOCHEM 767, 75.CrossRefGoogle Scholar
  26. 26.
    L. L. Boyer (1979). Phys. Rev. Lett. 42, 584.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xin Liu
    • 1
  • Xueling Lei
    • 1
  • Jianxin Le
    • 1
  • Chuying Ouyang
    • 1
  1. 1.Department of PhysicsJiangxi Normal UniversityNanchangChina

Personalised recommendations