Advertisement

Journal of Cluster Science

, Volume 26, Issue 1, pp 233–246 | Cite as

Alkynyl-Phosphine Substituted Fe2S2 Clusters: Synthesis, Structure and Spectroelectrochemical Characterization of a Cluster with a Class III Mixed-Valence [FeFe]3+ Core

  • Gregory L. Newman
  • Jamil M. A. Rahman
  • Josef B. G. Gluyas
  • Dmitry S. Yufit
  • Judith A. K. Howard
  • Paul J. Low
Original Paper

Abstract

Phosphinoalkynes P(C≡CC6H4Me-4)Ph2 (1) and P(C≡CC6H4C≡CC6H4Me-4)Ph2 (2) have been prepared from CuI catalysed reactions of the corresponding 1-alkyne and PClPh2. The trimethylamine-N-oxide promoted reaction of PPh3, 1 or 2 with [Fe2(μ-pdt)(CO)6] (pdt = propanedithiolate) affords derivatives [Fe2(μ-pdt)(CO)5{PRPh2}] [R=Ph (3), C≡CC6H4Me (5), C≡CC6H4C≡CC6H4Me (6)] or, at elevated temperatures, [Fe2(μ-pdt)(CO)4(PPh3)2] (4). The cyclic voltammograms of compounds 3 and 4 feature almost fully reversible one-electron oxidation processes and an irreversible reduction, whilst the electrochemical response of the alkynyl phosphine substituted complexes 5 and 6 is irreversible for both oxidation and reduction. IR spectroelectrochemical studies of 4 are consistent with an oxidation processes leading to a delocalized or (Class III) mixed valence [FeFe]3+ core in which the iron centers have an average oxidation state of 1.5. The molecular structures of the alkynyl phosphine substituted clusters 5 and 6 are also reported.

Keywords

Iron-only hydrogenase Spectroelectrochemistry Phosphino alkyne Trimethylamine-N-oxide Mixed-valence 

References

  1. 1.
    M. Y. Darensbourg, E. J. Lyon, X. Zhao, and I. P. Georgakaki (2003). Proc. Natl. Acad. Sci. USA 100, 3683.CrossRefGoogle Scholar
  2. 2.
    B. E. Barton, M. T. Olsen, and T. B. Rauchfuss (2010). Curr. Opin. Biotech. 21, 292.CrossRefGoogle Scholar
  3. 3.
    W. Lubitz, H. Ogata, O. Rudiger, and E. Reijerse (2014). Chem. Rev. 114, 4081.CrossRefGoogle Scholar
  4. 4.
    K. A. Vincent (2010). Philos. Trans. R. Soc A 368, 3713.CrossRefGoogle Scholar
  5. 5.
    S.P. Best, S.J. Borg and K.A. Vincent, in W. Kaim, and A. Klein, (eds.), Spectroelectrochemistry (RSC publishing, Cambridge, 2008), pp. 1–30.Google Scholar
  6. 6.
    N. Wisitruangsakul, O. Lenz, M. Ludwig, B. Friedrich, F. Lendzian, P. Hildebrandt, and I. Zebger (2009). Angew. Chem. Int. Ed. Engl. 48, 611.CrossRefGoogle Scholar
  7. 7.
    S. P. Best (2005). Coord. Chem. Rev. 249, 1536.CrossRefGoogle Scholar
  8. 8.
    A. Silakov, C. Kamp, E. Reijerse, T. Happe, and W. Lubitz (2009). Biochemistry 48, 7780.CrossRefGoogle Scholar
  9. 9.
    S. J. Borg, S. K. Ibrahim, C. J. Pickett, and S. P. Best (2008). C. R. Chim. 11, 852.CrossRefGoogle Scholar
  10. 10.
    M. H. Cheah, C. Tard, S. J. Borg, X. M. Liu, S. K. Ibrahim, C. J. Pickett, and S. P. Best (2007). J. Am. Chem. Soc. 129, 11085.CrossRefGoogle Scholar
  11. 11.
    C. Gimbert-Surinach, M. Bhadbhade, and S. B. Colbran (2012). Organometallics 31, 3480.CrossRefGoogle Scholar
  12. 12.
    X. de Hatten, E. Bothe, K. Merz, I. Huc and N. Metzler-Nolte (2008). Eur. J. Inorg. Chem. 4530.Google Scholar
  13. 13.
    J. Hou, X. J. Peng, Z. Y. Zhou, S. G. Sun, X. Zhao, and S. Gao (2006). J. Organomet. Chem. 691, 4633.CrossRefGoogle Scholar
  14. 14.
    S. J. Borg, M. I. Bondin, S. P. Best, M. Razavet, X. Liu, and C. J. Pickett (2005). Biochem. Soc. Trans. 33, 3.CrossRefGoogle Scholar
  15. 15.
    D.S. Chong, I.P. Georgakaki, R. Mejia-Rodriguez, J. Samabria-Chinchilla, M.P. Soriaga and M.Y. Darensbourg (2003). Dalton. Trans. 4158.Google Scholar
  16. 16.
    G. Berggren, A. Adamska, C. Lambertz, T. R. Simmons, J. Esselborn, M. Atta, S. Gambarelli, J. M. Mouesca, E. Reijerse, W. Lubitz, T. Happe, V. Artero, and M. Fontecave (2013). Nature 499, 66.CrossRefGoogle Scholar
  17. 17.
    V. Artero and M. Fontecave (2005). Coord. Chem. Rev. 249, 1518.CrossRefGoogle Scholar
  18. 18.
    S. I. Allakhverdiev, V. D. Kreslavski, V. Thavasi, S. K. Zharmukhamedov, V. V. Klimov, T. Nagata, H. Nishihara, and S. Ramakrishna (2009). Photochem. Photobiol. Sci. 8, 148.CrossRefGoogle Scholar
  19. 19.
    A. Magnuson, M. Anderlund, O. Johansson, P. Lindblad, R. Lomoth, T. Polivka, S. Ott, K. Stensjo, S. Styring, V. Sundstrom, and L. Hammarstrom (2009). Acc. Chem. Res. 42, 1899.CrossRefGoogle Scholar
  20. 20.
    K. Sybirna and H. Bottin (2013). Int. J. Hydrogen Energy 38, 13164.CrossRefGoogle Scholar
  21. 21.
    V. S. Thoi, Y. J. Sun, J. R. Long, and C. J. Chang (2013). Chem. Soc. Rev. 42, 2388.CrossRefGoogle Scholar
  22. 22.
    E. Reisner (2011). Eur. J. Inorg. Chem. 1005.Google Scholar
  23. 23.
    L. C. Sun, B. Akermark, and S. Ott (2005). Coord. Chem. Rev. 249, 1653.CrossRefGoogle Scholar
  24. 24.
    F. Y. Wen and C. Li (2013). Acc. Chem. Res. 46, 2355.CrossRefGoogle Scholar
  25. 25.
    F. Wang, W. G. Wang, H. Y. Wang, G. Si, C. H. Tung, and L. Z. Wu (2012). ACS Catal. 2, 407.CrossRefGoogle Scholar
  26. 26.
    G. J. Kubas (2012). Commun. Inorg. Chem. 33, 102.CrossRefGoogle Scholar
  27. 27.
    L. C. Song, L. X. Wang, G. J. Jia, Q. L. Li, and J. B. Ming (2012). Organometallics 31, 5081.CrossRefGoogle Scholar
  28. 28.
    A. M. Kluwer, R. Kapre, F. Hartl, M. Lutz, A. L. Spek, A. M. Brouwer, P. W. N. M. van Leeuwen, and J. N. H. Reek (2009). Proc. Natl. Acad. Sci. USA 106, 10460.CrossRefGoogle Scholar
  29. 29.
    H. H. Cui, M. Q. Hu, H. M. Wen, G. L. Chai, C. B. Ma, H. Chen, and C. N. Chen (2012). Dalton Trans. 41, 13899.CrossRefGoogle Scholar
  30. 30.
    P. J. Low (2013). Coord. Chem. Rev. 257, 1507.CrossRefGoogle Scholar
  31. 31.
    P. J. Low (2008). J. Clust. Sci. 19, 5.CrossRefGoogle Scholar
  32. 32.
    I. P. Beletskaya, V. V. Afanasiev, M. A. Kazankova, and I. V. Efimova (2003). Org. Lett. 5, 4309.CrossRefGoogle Scholar
  33. 33.
    V.V. Afanasiev, I.P. Beletskaya, M.A. Kazankova, I.V. Efimova and M.U. Antipin (2003). Synthesis-Stuttgart. 2835.Google Scholar
  34. 34.
    E. J. Lyon, I. P. Georgakaki, J. H. Reibenspies, and M. Y. Darensbourg (2001). J. Am. Chem. Soc. 123, 3268.CrossRefGoogle Scholar
  35. 35.
    C. F. Works (2007). J. Chem. Educ. 84, 836.CrossRefGoogle Scholar
  36. 36.
    P. Li, M. Wang, C.J. He, G.H. Li, X.Y. Liu, C.N. Chen, B. Akermark and L.C. Sun (2005). Eur. J. Inorg. Chem. 2506.Google Scholar
  37. 37.
    A. A. Cherkas, L. H. Randall, S. A. Maclaughlin, G. N. Mott, N. J. Taylor, and A. J. Carty (1998). Organometallics 7, 969.CrossRefGoogle Scholar
  38. 38.
    P.J. Low, A.J. Carty, K.A. Udachin and G.D. Enright (2001). Chem. Commun. 411.Google Scholar
  39. 39.
    V. P. Colquhoun, A. E. Goeta, and P. J. Low (2007). J. Clust. Sci. 18, 564.CrossRefGoogle Scholar
  40. 40.
    E. J. Lyon, I. P. Georgakaki, J. H. Reibenspies, and M. Y. Darensbourg (1999). Angew. Chem. Int. Ed. Engl. 38, 3178.CrossRefGoogle Scholar
  41. 41.
    B. S. Yin, T. B. Li, and M. S. Yang (2011). Acta Cryst. E 67, m1502.CrossRefGoogle Scholar
  42. 42.
    D. Morvan, J.F. Capon, F. Gloaguen, P. Schollhammer and J. Talarmin (2007). Eur. J. Inorg. Chem. 5062.Google Scholar
  43. 43.
    X. Zhao, I. P. Georgakaki, M. L. Miller, J. C. Yarbrough, and M. Y. Darensbourg (2001). J. Am. Chem. Soc. 123, 9710.CrossRefGoogle Scholar
  44. 44.
    X. Zhao, I. P. Georgakaki, M. L. Miller, R. Mejia-Rodriguez, C. Y. Chiang, and M. Y. Darensbourg (2002). Inorg. Chem. 41, 3917.CrossRefGoogle Scholar
  45. 45.
    A. Silakov, E. J. Reijerse, S. P. J. Albracht, E. C. Hatchikian, and W. Lubitz (2007). J. Am. Chem. Soc. 129, 11447.CrossRefGoogle Scholar
  46. 46.
    W. Lubitz, E. Reijerse, and M. van Gastel (2007). Chem. Rev. 107, 4331.CrossRefGoogle Scholar
  47. 47.
    P. E. M. Siegbahn, J. W. Tye, and M. B. Hall (2007). Chem. Rev. 107, 4414.CrossRefGoogle Scholar
  48. 48.
    M. Razavet, S.J. Borg, S.J. George, S.P. Best, S.A. Fairhurst and C.J. Pickett (2002). Chem. Commun. 700.Google Scholar
  49. 49.
    S. Tschierlei, S. Ott, and R. Lomoth (2011). Energy Environ. Sci. 4, 2340.CrossRefGoogle Scholar
  50. 50.
    M. T. Olsen, T. B. Rauchfuss, and S. R. Wilson (2010). J. Am. Chem. Soc. 132, 17733.CrossRefGoogle Scholar
  51. 51.
    A. Silakov, M. T. Olsen, S. Sproules, E. J. Reijerse, T. B. Rauchfuss, and W. Lubitz (2012). Inorg. Chem. 51, 8617.CrossRefGoogle Scholar
  52. 52.
    A. Jablonskyte, J. A. Wright, S. A. Fairhurst, J. N. T. Peck, S. K. Ibrahim, V. S. Oganesyan, and C. J. Pickett (2011). J. Am. Chem. Soc. 133, 18606.CrossRefGoogle Scholar
  53. 53.
    M. Karnahl, S. Tschierlei, O. F. Erdem, S. Pullen, M. P. Santoni, E. J. Reijerse, W. Lubitz, and S. Ott (2012). Dalton Trans. 41, 12468.CrossRefGoogle Scholar
  54. 54.
    M. Krejcik, M. Danek, and F. Hartl (1991). J. Electroanal. Chem. 317, 179.CrossRefGoogle Scholar
  55. 55.
    L. E. Roy, E. R. Batista, and P. J. Hay (2008). Inorg. Chem. 47, 9228.CrossRefGoogle Scholar
  56. 56.
    C. H. Hsieh, O. F. Erdem, S. D. Harman, M. L. Singleton, E. Reijerse, W. Lubitz, C. V. Popescu, J. H. Reibenspies, S. M. Brothers, M. B. Hall, and M. Y. Darensbourg (2012). J. Am. Chem. Soc. 134, 13089.CrossRefGoogle Scholar
  57. 57.
    C. Lambertz, P. Chernev, K. Klingan, N. Leidel, K. G. V. Sigfridsson, T. Happe, and M. Haumann (2014). Chem. Sci. 5, 1187.CrossRefGoogle Scholar
  58. 58.
    W. M. Khairul, L. Porres, D. Albesa-Jove, M. S. Senn, M. Jones, D. P. Lydon, J. A. K. Howard, A. Beeby, T. B. Marder, and P. J. Low (2006). J. Clust. Sci. 17, 65.CrossRefGoogle Scholar
  59. 59.
    G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, and K. I. Goldberg (2010). Organometallics 29, 2176.CrossRefGoogle Scholar
  60. 60.
    G. M. Sheldrick (2008). Acta Cryst. A 64, 112.CrossRefGoogle Scholar
  61. 61.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, 339.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gregory L. Newman
    • 1
  • Jamil M. A. Rahman
    • 1
  • Josef B. G. Gluyas
    • 2
  • Dmitry S. Yufit
    • 1
  • Judith A. K. Howard
    • 1
  • Paul J. Low
    • 1
    • 2
  1. 1.Department of ChemistryDurham UniversityDurhamUK
  2. 2.School of Chemistry and BiochemistryUniversity of Western AustraliaPerthAustralia

Personalised recommendations