Advertisement

Journal of Cluster Science

, Volume 26, Issue 3, pp 851–862 | Cite as

Two New Methyl Viologen Halocadmium Charge-Transfer Salts with Isostructures: Visible-Light Excited Photoluminescences, Thermochromisms and Theoretical Studies

  • Hao-Hong Li
  • Peng Wang
  • Xi-Hui Chao
  • Chun-Cai Lin
  • An-Wen Gong
  • Zhi-Rong Chen
Original Paper

Abstract

Two new methyl viologen halocadmium charge-transfer salts with isostructures, [(MV)(CdI4)]2·3H2O (1) and (MV)(CdI4)·H2O (2) (MV = methyl viologen, i.e., 1,1′-dimethyl-4,4′-bipyridinium), have been structurally determined. 1 and 2 consist of CdI4 2− clusters, MV2+ dications, lattice waters with isostructures, and C–H···I hydrogen bonds are presented in 1 but absent in 2, furthermore, their relative stabilities based on were investigated by DFT calculations. Both compounds display photoluminescences in the visible region under visible-light excitations, and their thermochromism effects are observed. But their photoluminescence and thermochromic behaviors differ greatly with the presence or absence of hydrogen bonds. Moreover, their absorption spectra have also been discussed.

Keywords

Methyl viologen Halocadmium Photoluminescence Thermochromism 

Notes

Acknowledgments

We acknowledge support of this research by National Natural Science Foundation of China (NOS: 21271043).

References

  1. 1.
    J. T. Sampanthar, K. G. Neoh, S. W. Ng, E. T. Kang, and K. L. Tan (2000). Adv. Mater. 12, 1536.CrossRefGoogle Scholar
  2. 2.
    M. Riskin, R. Tel-Vered, and I. Willer (2007). Adv. Funct. Mater. 17, 3858.CrossRefGoogle Scholar
  3. 3.
    W. W. Porter and T. P. Vaid (2005). J. Org. Chem. 70, 5028.CrossRefGoogle Scholar
  4. 4.
    D. S. Guo, L. H. Wang, and Y. Liu (2007). J. Org. Chem. 72, 777.Google Scholar
  5. 5.
    R. T. Weitz, A. Walter, R. Engl, R. Sezi, and C. Dehm (2006). Nano Lett. 6, 2810.CrossRefGoogle Scholar
  6. 6.
    M. Graetzel (1981). Acc. Chem. Res. 14, 376.CrossRefGoogle Scholar
  7. 7.
    L. Sun, L. Hammarstrom, B. A. Kermark, and S. Styring (2001). Chem. Soc. Rev. 30, 36.CrossRefGoogle Scholar
  8. 8.
    E. L. Clennan (2004). Coord. Chem. Rev. 248, 477.CrossRefGoogle Scholar
  9. 9.
    A. Bose, P. He, C. Liu, B. D. Ellman, R. J. Twieg, and S. P. Huang (2002). J. Am. Chem. Soc. 124, 4.CrossRefGoogle Scholar
  10. 10.
    I. Nunn, B. Eisen, R. Benedix, and H. Kish (1994). Inorg. Chem. 33, 5079.CrossRefGoogle Scholar
  11. 11.
    H. Kirsh, B. Eisen, R. Dinnebier, K. Shankland, W. I. F. David, and F. Knoch (2001). Chem. Eur. J. 7, 738.CrossRefGoogle Scholar
  12. 12.
    H. Kirsh (1993). Coord. Chem. Rev. 125, 155.CrossRefGoogle Scholar
  13. 13.
    L. Dobrzycki and K. Wozniak (2009). J. Mol. Struct. 921, 18.CrossRefGoogle Scholar
  14. 14.
    E. A. Buvaylo, V. N. Kokozay, O. Y. Vassilyeva, B. W. Skelton, and J. Jezierska (2009). Inorg. Chim. Acta. 362, 2429.CrossRefGoogle Scholar
  15. 15.
    R. P. Sharma, A. Singh, P. Brandao, V. Felix, and P. Venugopalan (2011). Polyhedron 30, 2759.CrossRefGoogle Scholar
  16. 16.
    C. Yang, M. S. Wang, L. Z. Cai, X. M. Jiang, M. F. Wu, G. C. Guo, and J. S. Huang (2010). Inorg. Chem. Commun. 13, 1021.CrossRefGoogle Scholar
  17. 17.
    P. Ren, J. Q. Qin, C. T. Chen, D. Q. Zhang, and H. M. Hu (2004). J. Chem. Crystallogr 34, 291.CrossRefGoogle Scholar
  18. 18.
    Q. C. Zhang, T. Wu, X. H. Bu, T. Tran, and P. Y. Feng (2008). Chem. Mater. 20, 4170.CrossRefGoogle Scholar
  19. 19.
    M. J. Frisch, et al. Gaussian 03 (Gaussian Inc., Pittsburgh, 2003).Google Scholar
  20. 20.
    J. P. Perew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.CrossRefGoogle Scholar
  21. 21.
    M. Segall, P. Lindan, M. Probert, C. Pickard et al (2006), Materials Studio CASTEP version 4.1.Google Scholar
  22. 22.
    G. M. Sheldrick SHELXL-97 Program for X-ray crystal structure refinement (University of Göttingen, Germany, 1997).Google Scholar
  23. 23.
    G. S. Nichol and W. Clegg (2007). CrystEngComm. 9, 959.CrossRefGoogle Scholar
  24. 24.
    G. R. Desiraju (2007). CrystEngComm. 9, 91.CrossRefGoogle Scholar
  25. 25.
    H. H. Li, S. Y. Chen, H. J. Dong, Y. L. Wu, and Z. R. Chen (2011). J. Chem. Crystallogr. 41, 858.CrossRefGoogle Scholar
  26. 26.
    W. T. Chen, D. S. Liu, S. M. Ying, H. L. Chen, and Y. P. Xu (2008). Inorg. Chem. Commun. 11, 1212.CrossRefGoogle Scholar
  27. 27.
    A. M. Goforth, M. A. Tershansy, M. D. Smith, L. Peterson Jr, J. G. Kelley, W. J. I. de Benedetti, and H. C. Zur Loye (2011). J. Am. Chem. Soc 133, 603.CrossRefGoogle Scholar
  28. 28.
    M. A. Tershansy, A. M. Goforth, J. R. Gardinier, M. D. Smith, L. Peterson Jr, and H. C. zur Loye (2007). Solid State Sci. 9, 410.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of ChemistryFuzhou UniversityFuzhouChina

Personalised recommendations