Journal of Cluster Science

, Volume 25, Issue 6, pp 1553–1565 | Cite as

Lanthanide Cluster Organic Frameworks Derived from Pyridine-2,6-dicarboxylate and Oxalate: Syntheses, Structures and Luminescence

  • Wei-Hui Fang
  • Xiang-Li Jia
  • Guo-Yu Yang
Original Paper


Two novel cluster organic frameworks derived from pyridine-2,6-dicarboxylate (PDA) and oxalate (ox2−) have been hydrothermally made: [Eu3(SO4)(PDA)3(ox)0.5(H2O)5]·4H2O (1) and Er(PDA)(ox)0.5(H2O) (2). Compound 1 possesses one-dimensional chain structure constructed from the alternate linkage of tetranuclear [Eu4(SO4)2]8+ (Eu4) and dinuclear [Eu2(ox)]4+ (Eu2) clusters. Compound 2 is a two-dimensional layer based on dimeric [Er2(COO)2]2+ (Er2) cluster units. Interestingly, such layer can be intuitively viewed as the linkages of helical chains and oxalate. In these two compounds, all anions are bivalent, and the ratio of trivalent lanthanide ions to these dianions is 2:3. Furthermore, compound 1 exhibits strong red luminescence upon 276 nm excitation.


Lanthanide cluster Pyridine-2,6-dicarboxylate Hydrothermal synthesis Luminescence 



This work was supported by the NSFC (Nos. 91122028, 21221001, and 50872133), the 973 Program (Nos. 2014CB932101 and 2011CB932504), the NSFC for Distinguished Young Scholars (No. 20725101).


  1. 1.
    R. Sessoli and A. K. Powell (2009). Chem. Soc. Rev. 253, 2328.Google Scholar
  2. 2.
    A. Müller, E. Beckmann, H. Bögge, M. Schmidtmann, and A. Dress (2002). Nature 41, 1162.Google Scholar
  3. 3.
    A. J. Tasiopoulos, A. Vinslava, W. Wernsdorfer, K. A. Abboud, and G. Christou (2004). Angew. Chem. Int. Ed. 43, 2117.CrossRefGoogle Scholar
  4. 4.
    M. B. Zhang, J. Zhang, S. T. Zheng, and G. Y. Yang (2005). Angew. Chem. Int. Ed. 44, 1385.CrossRefGoogle Scholar
  5. 5.
    X. J. Kong, Y. L. Wu, L. S. Long, L. S. Zheng, and Z. P. Zheng (2009). J. Am. Chem. Soc. 131, 6918.CrossRefGoogle Scholar
  6. 6.
    Z. P. Zheng (2001). Chem. Commun. 2521.Google Scholar
  7. 7.
    M. Wu, F. Jiang, X. Kong, D. Yuan, L. Long, S. A. AL-Thabaiti, and M. Hong (2013). Chem. Sci. 4, 3104.CrossRefGoogle Scholar
  8. 8.
    G. Calvez, C. Daiguebonne, and O. Guillou (2011). Inorg. Chem. 50, 2851.CrossRefGoogle Scholar
  9. 9.
    W. H. Fang, L. Cheng, L. Huang, and G. Y. Yang (2013). Inorg. Chem. 52, 6.CrossRefGoogle Scholar
  10. 10.
    J. W. Cheng, J. Zhang, S. T. Zheng, M. B. Zhang, and G. Y. Yang (2006). Angew. Chem. Int. Ed. 45, 73.CrossRefGoogle Scholar
  11. 11.
    J. W. Cheng, J. Zhang, S. T. Zheng, and G. Y. Yang (2008). Chem.-Eur. J. 14, 88.CrossRefGoogle Scholar
  12. 12.
    W. H. Fang, J. W. Cheng, and G. Y. Yang (2014). Chem.-Eur. J. 20, 2704.CrossRefGoogle Scholar
  13. 13.
    X. J. Gu and D. F. Xue (2007). Inorg. Chem. 46, 5349.CrossRefGoogle Scholar
  14. 14.
    J. W. Cheng, S. T. Zheng, W. Liu, and G. Y. Yang (2008). CrystEngComm 10, 1047.CrossRefGoogle Scholar
  15. 15.
    M. D. Allendorf, C. A. Bauer, R. K. Bhakta, and R. J. T. Houk (2009). Chem. Soc. Rev. 38, 1330.CrossRefGoogle Scholar
  16. 16.
    W. X. Feng, Y. Zhang, Z. Zhang, X. Q. Lu, H. Liu, G. X. Shi, D. Zou, J. R. Song, D. D. Fan, W. K. Wong, and R. A. Jones (2012). Inorg. Chem. 51, 11377.CrossRefGoogle Scholar
  17. 17.
    Y. Q. Sun, J. Zhang, Y. M. Chen, and G. Y. Yang (2005). Angew. Chem. Int. Ed. 44, 5814.CrossRefGoogle Scholar
  18. 18.
    J. Xu, W. P. Su, and M. C. Hong (2011). Cryst. Growth Des. 11, 337.CrossRefGoogle Scholar
  19. 19.
    G. Peng, L. Ma, L. Liang, Y. Ma, C. Yang, and H. Deng (2013). CrystEngComm 15, 922.CrossRefGoogle Scholar
  20. 20.
    B. Zhao, L. Yi, P. Cheng, D. Z. Liao, S. P. Yan, and Z. H. Jiang (2004). Inorg. Chem. Commun. 7, 971.CrossRefGoogle Scholar
  21. 21.
    H. Eshtiagh-Hosseini, H. Aghabozorg, M. Mirzaei, M. M. Amini, Y. G. Chen, A. Shokrollahi, and R. Aghaei (2010). J. Mol. Struct. 973, 180.CrossRefGoogle Scholar
  22. 22.
    M. Frisch, and C. L. Cahill (2006). Dalton Trans. 4679.Google Scholar
  23. 23.
    D. Banerjee, S. J. Kim, L. A. Borkowski, W. Xu, and J. B. Parise (2009). Cryst. Growth Des. 10, 709.CrossRefGoogle Scholar
  24. 24.
    X. J. Kong, Y. P. Ren, L. S. Long, Z. P. Zheng, G. Nichol, R. B. Huang, and L. S. Zheng (2008). Inorg. Chem. 47, 2728.CrossRefGoogle Scholar
  25. 25.
    X. Feng, J. S. Zhao, L. Y. Wang, and X. G. Shi (2009). Inorg. Chem. Commun. 12, 388.CrossRefGoogle Scholar
  26. 26.
    X. Feng, B. Liu, L. Y. Wang, J. S. Zhao, J. G. Wang, N. S. Weng, and X. G. Shi (2010). Dalton Trans. 39, 8038.CrossRefGoogle Scholar
  27. 27.
    X. Feng, L. Y. Wang, J. S. Zhao, J. G. Wang, N. S. Weng, B. Liu, and X. G. Shi (2010). CrystEngComm 12, 774.CrossRefGoogle Scholar
  28. 28.
    M. S. Liu, Q. Y. Yu, Y. P. Cai, C. Y. Su, X. M. Lin, X. X. Zhou, and J. W. Cai (2008). Cryst. Growth Des. 8, 4083.CrossRefGoogle Scholar
  29. 29.
    G. M. Sheldrick SADABS, Program for Siemens Area Detector Absorption Corrections (University of Göttingen, Göttingen, Germany, 1997).Google Scholar
  30. 30.
    G. M. Sheldrick SHELXL97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, Germany, 1997).Google Scholar
  31. 31.
    G. M. Sheldrick SHELXS97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, Germany, 1997).Google Scholar
  32. 32.
    X. Y. Chen, X. P. Yang, and B. J. Holliday (2010). Inorg. Chem. 49, 2538.Google Scholar
  33. 33.
    J. Cepeda, R. Balda, G. Beobide, O. Castillo, J. Fernandez, A. Luque, S. Perez-Yanez, P. Roman, and D. Vallejo-Sanchez (2011). Inorg. Chem. 50, 8437.CrossRefGoogle Scholar
  34. 34.
    B. Q. Ma, D. S. Zhang, S. Gao, T. Z. Jin, C. H. Yan, and G. X. Xu (2000). Angew. Chem. Int. Ed. 39, 3644.CrossRefGoogle Scholar
  35. 35.
    W. H. Wang, H. R. Tian, Z. C. Zhou, Y. L. Feng, and J. W. Cheng (2012). Cryst. Growth Des. 12, 2567.CrossRefGoogle Scholar
  36. 36.
    G. Abbas, Y. H. Lan, G. E. Kostakis, W. Wernsdorfer, C. E. Anson, and A. K. Powell (2010). Inorg. Chem. 49, 8067.CrossRefGoogle Scholar
  37. 37.
    D. M. M. Freckmann, T. Dube, C. D. Berube, S. Gambarotta, and G. P. A. Yap (2002). Organometallics 21, 1240.CrossRefGoogle Scholar
  38. 38.
    I. A. Gass, B. Moubaraki, S. K. Langley, S. R. Batten, and K. S. Murray (2012). Chem. Commun. 48, 2089.CrossRefGoogle Scholar
  39. 39.
    W. H. Fang and G. Y. Yang (2014). J. Cluster Sci. doi: 10.1007/s10876-014-0717-1.Google Scholar
  40. 40.
    Y. Q. Sun, J. Zhang, and G. Y. Yang (2006). Chem. Commun. 1947.Google Scholar
  41. 41.
    A. F. Kirby, D. Foster, and F. S. Richardson (1983). Chem. Phys. Lett. 95, 507.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina

Personalised recommendations