Journal of Cluster Science

, Volume 26, Issue 3, pp 775–788 | Cite as

Cytotoxicity and Genotoxicity of Biosynthesized Gold and Silver Nanoparticles on Human Cancer Cell Lines

  • Asra Parveen
  • Srinath Rao
Original Paper


Nanoparticles research is currently an area of passionate scientific interest due to its wide variety of potential applications in therapeutic and biomedical interest. This paper presents cytotoxicity and genotoxicity of gold and silver nanoparticles synthesized by using Cassia auriculata leaf extract at room temperature on different cancer cell lines. The characterization was performed by UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and Transmission Electron Measurement (TEM). Cytotoxicity was analyzed against human carcinoma cells lines by MTT assay, while genotoxicity was monitored by agarose gel electrophoresis method. The UV-Vis spectroscopy reveals surface plasmon absorption maxima at 541 nm for gold and 425 nm for silver. The peaks in XRD pattern were in good agreement with the standard values of the face centered cubic form, with an average size of 21 nm in gold and 20 nm in silver. TEM reveals that the particles were spherical and polydisperse. This biological procedure for synthesis of AuNPs and AgNPs and selective inhibition of cancerous cells opens an alternative avenue to treat human cancer effectively. Least concentration of AgNPs was more toxic and AuNPs reveals dose dependent response.


Nanoparticles Biological synthesis Characterization Cytotoxicity Genotoxicity 



The financial support of University Grants Commission (F1-17.1/2010/MANF-MUS-KAR-6091) is highly appreciated. The authors are thankful to Dr. Prakasham Reddy Shetty, Indian Institute of Chemical Technology, Hyderabad for providing TEM facility.


  1. 1.
    R. Siegel, D. Naishadham, and A. Jemal (2012). Cancer J. Clin. 62, 10.CrossRefGoogle Scholar
  2. 2.
    World Health Organization (2012) Available at: Accessed November 7.
  3. 3.
    A. Kotnis, R. Sarin, and R. Mulherkar (2005). J. Biosci. 30, 93.CrossRefGoogle Scholar
  4. 4.
    A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun (2007). Cancer J. Clin. 57, 43.CrossRefGoogle Scholar
  5. 5.
    F. Brayand and B. Moller (2006). Nat. Rev. Cancer. 6, 63.CrossRefGoogle Scholar
  6. 6.
    M. M. Gottesman, T. Fojo, and S. E. Bates (2002). Nat. Rev. Cancer. 2, 48.CrossRefGoogle Scholar
  7. 7.
    A. L. Harris and D. Hochhauser (1992). Acta Oncol. 31, 205.CrossRefGoogle Scholar
  8. 8.
    L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad (2008). Clin. Pharmacol. Ther. 83, 761.CrossRefGoogle Scholar
  9. 9.
    V. Wagner, A. Dullaart, A. K. Bock, and A. Zweck (2006). Nat. Biotechnol. 24, 1211.CrossRefGoogle Scholar
  10. 10.
    N. J. Farrer, L. Salassa, and P. J. Sadler (2009). Dalton. Trans. 48, 10690. [PubMed: 20023896].CrossRefGoogle Scholar
  11. 11.
    Y. Unno, Y. Shino, F. Kondo, N. Igarashi, et al. (2005). Clin. Cancer. Res. 11, 4553.CrossRefGoogle Scholar
  12. 12.
    S. A. Abraham, C. McKenzie, D. Masin, T. O. Harasym, L. D. Mayer, and M. B. Bally (2004). J. Clin. Cancer. Res. 10, 728.CrossRefGoogle Scholar
  13. 13.
    J. C. Byrd, D. M. Lucas, A. P. Mone, J. B. Kitner, J. J. Drabick, and M. R. Grever (2000). J. Hematol. 101, 4547.Google Scholar
  14. 14.
    T. J. Webster (2006). Int. J. Nanomedicine. 1, 373.CrossRefGoogle Scholar
  15. 15.
    D. Prabhu, C. Arulvasu, G. Babu, R. Manikandan, and P. Srinivasan (2013). Process Biochem. 48, 317.CrossRefGoogle Scholar
  16. 16.
    M. Jeyaraj, G. Sathishkumar, G. Sivanandhan, D. MubarakAli, M. A. R. Rajesh, G. Kapildev, M. Manickavasagam, N. Thajuddin, K. Premkumar, and A. Ganapathi (2013). Colloids Surf. B Biointerfaces. 106, 86.CrossRefGoogle Scholar
  17. 17.
    K. Satyavani, S. Gurudeeban, T. Ramanathan, and T. Balasubramanian (2011). J. Nanobiotechnol. 9, 43.CrossRefGoogle Scholar
  18. 18.
    R. Govender, A. Phulukdaree, R. M. Gengan, K. Anand, and A. A. Chuturgoon (2013). J. Nanobiotechnol. 11, 5.CrossRefGoogle Scholar
  19. 19.
    S. Lokina and V. Narayanan (2013). Chem. Sci. Trans. 2, 105. doi: 10.7598/cst2013.22.Google Scholar
  20. 20.
    D. Raghunandan, B. Ravishankar, S. Ganachari, B. Mahesh, et al. (2011). Cancer Nanotechnol. 2, 57. doi: 10.1007/s12645-011-0014-8.CrossRefGoogle Scholar
  21. 21.
    S. Kaliyamurthi, G. Selvaraj, R. Thiruganasambandam, and B. Thangavel (2012). Avicenna J. Med. Biotechnol. 4, 35.Google Scholar
  22. 22.
    M. S. Ghassan, H. M. Wasnaa, R. M. Thorria, et al. (2013). Asian Pac. J. Trop. Biomed. 3, 58.CrossRefGoogle Scholar
  23. 23.
    R. Geetha, T. Ashokkumar, S. Tamilselvan, K. Govindaraju, M. Sadiq, and G. Singaravelu (2013). Cancer Nanotechnol. 4, 91. doi: 10.1007/s12645-013-0040-9.CrossRefGoogle Scholar
  24. 24.
    M. Jannathul Firdhouse and P. Lalitha (2013). Cancer Nanotechnol. 4, 137. doi: 10.1007/s12645-013-0045-4.CrossRefGoogle Scholar
  25. 25.
    A. Nan, X. Bai, S. J. Son, S. B. Lee, and H. Ghandehari (2008). Nano Lett. 8, 2150.CrossRefGoogle Scholar
  26. 26.
    S. H. Kim, H. S. Lee, D. S. Ryu, et al. (2011). Korean J. Microbiol. Biotechnol. 39, 77.Google Scholar
  27. 27.
    C. Carlson, S. M. Hussein, A. M. Schrand, et al. (2008). J. Phys. Chem. 112, 13608.CrossRefGoogle Scholar
  28. 28.
    P. V. Asharani, G. L. K. Mun, M. P. Hande, and S. Valiyaveettil (2009). ACS Nano. 3, 279.CrossRefGoogle Scholar
  29. 29.
    R. Foldbjerg, P. Olesen, M. Hougaard, D. A. Dang, H. J. Hoffmann, and H. Autrup (2009). Toxicol. Lett. 190, 156.CrossRefGoogle Scholar
  30. 30.
    S. K. Kumar and J. Yadav (2009). Chem. Technol. Biotechnol. 84, 151.CrossRefGoogle Scholar
  31. 31.
    S. ShivShankar, R. Akhilesh, A. Absar, and S. Murali (2004). J. Colloid Interface Sci. 275, 496.CrossRefGoogle Scholar
  32. 32.
    M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O’Regan (2006). Lancet Oncol. 7, 657.CrossRefGoogle Scholar
  33. 33.
    P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed (2006). J. Phys. Chem. B 110, 7238.CrossRefGoogle Scholar
  34. 34.
    S. L. Smitha, D. Philip, and K. G. Gopchandran (2009). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 74, 735.CrossRefGoogle Scholar
  35. 35.
    V. Usha and A. K. Bopaiah (2012). Int. J. Pharm. Bio. Sci. 3, 260.Google Scholar
  36. 36.
    S. A. Gaikwad, K. Asha, M. Kavita, N. R. Deshpande, and J. P. Salveka (2010). Int. J. Pharm. Tech. Res. 2, 1092.Google Scholar
  37. 37.
    L. G. Griffith and M. A. Swartz (2006). Nat. Rev. Mol. Cell Biol. 7, 211. doi: 10.1038/nrm1858.CrossRefGoogle Scholar
  38. 38.
    C. M. Goodman, C. D. McCusker, T. Yilmaz, and V. M. Rotello (2004). Bioconjug. Chem. 15, 897. doi: 10.1021/bc049951i.CrossRefGoogle Scholar
  39. 39.
    Y. S. Chen, Y. C. Hung, I. Liau, and G. S. Huang (2009). Nanoscale Res. Lett. 4, 858. doi: 10.1007/s11671-009-9334-6.CrossRefGoogle Scholar
  40. 40.
    Y. Pan, A. Leifert, D. Ruau, and S. Neuss (2009). Small. 5, 2067. doi: 10.1002/smll.200900466.CrossRefGoogle Scholar
  41. 41.
    M. I. Sriram, S. B. M. Kanth, K. Kalishwaralal, and S. Gurunathan (2010). Int. J. Nanomedicine. 5, 753.Google Scholar
  42. 42.
    M. A. Franco-Molina, E. Mendoza-Gamboa, C. A. Sierra-Rivera, et al. (2010). J. Exp. Clinical Cancer Res. 29, 148.CrossRefGoogle Scholar
  43. 43.
    P. Sanpui, A. Chattopadhyay, and S. S. Ghosh (2011). ACS Appl. Mater. Interfaces. 3, 218.CrossRefGoogle Scholar
  44. 44.
    P. Gopinath, S. K. Gogoi, A. Chattopadhyay, and S. S. Ghosh (2008). Nanotechnology. 19, Article ID 075104.Google Scholar
  45. 45.
    C. Zanette, M. Pelin, M. Crosera, et al. (2011). Toxicol. In Vitro. 25, 1053.CrossRefGoogle Scholar
  46. 46.
    W. Liu, Y. Wu, C. Wang, et al. (2010). Nanotoxicology. 4, 319.CrossRefGoogle Scholar
  47. 47.
    R. Foldbjerg, D. A. Dang, and H. Autrup (2011). Arch. Toxicol. 85, 743.CrossRefGoogle Scholar
  48. 48.
    H. J. Yen, S. H. Hsu, and C. L. Tsai (2009). Small. 5, 1553.CrossRefGoogle Scholar
  49. 49.
    S. Moaddab, H. Ahari, D. Shahbazzadeh, et al. (2011). Int. J. Nano Lett. 1, 11.Google Scholar
  50. 50.
    J. L. Martindale and N. J. Holbrook (2002). J. Cell. Physiol. 192, 1.CrossRefGoogle Scholar
  51. 51.
    C. Carlson, S. M. Hussein, A. M. Schrand, et al. (2008). J. Phys. Chem. 112, 13608.CrossRefGoogle Scholar
  52. 52.
    S. Hackenberg, A. Scherzed, and M. Kessler (2011). Toxicol. Lett. 201, 27.CrossRefGoogle Scholar
  53. 53.
    R. P. Singh and P. Ramarao (2012). Toxicol. Lett. 213, 249.CrossRefGoogle Scholar
  54. 54.
    M. Dizdaroglu (1991). Free. Radic. Biol. Med. 10, 225.CrossRefGoogle Scholar
  55. 55.
    P. Yang and F. Gao (2002). Principle of Bioinorganic Chemistry. Science press, Beijing, pp. 322 (in Chinese).Google Scholar
  56. 56.
    J. Boonstra and J. A. Post (2004). Gene. 337, 1.CrossRefGoogle Scholar
  57. 57.
    K. K. Panda, V. M. Achary, R. Krishnaveni, B. K. Padhi, S. N. Sarangi, S. N. Sahu, and B. B. Panda (2011). Toxicol. In Vitro. 25, 1097.CrossRefGoogle Scholar
  58. 58.
    N. Lubick (2008). Environ. Sci. Technol. 42, 8617.CrossRefGoogle Scholar
  59. 59.
    J. Cadet, T. Douki, and J. L. Ravanat (2010). Free. Radic. Biol. Med. 49, 9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Plant Tissue Culture and Genetic Engineering Laboratory, Department of Post Graduate Studies and Research in BotanyGulbarga UniversityGulbargaIndia

Personalised recommendations