Journal of Cluster Science

, Volume 26, Issue 3, pp 727–742 | Cite as

Comparison Between Silver and Gold Nanoparticles Prepared by Pulsed Laser Ablation in Distilled Water

  • Elmira Solati
  • Davoud Dorranian
Original Paper


Noble metals silver and gold nanoparticles were synthesized by pulsed laser ablation of silver and gold metal plates immersed in distilled water. In this work, the effect of the laser pulse fluence on the production of nanoparticles prepared by pulsed laser ablation is investigated. The synthesized nanoparticles are characterized by using X-ray diffraction, UV–Visible absorption spectroscopy, transmission electron microscopy, dynamic light scattering and room temperature photoluminescence. The UV–Visible absorption spectra of the nanoparticles show sharp absorptions in the visible regions due to surface plasmon resonance oscillations in noble metal nanoparticles. An enhancement in photoluminescence intensity is observed with increasing the laser fluence. It is found that all samples exhibit photoluminescence emission, at room temperature, in the UV–Visible region, due to the recombination of electrons with holes.


Ag nanoparticles Au nanoparticles Pulsed laser ablation Surface plasmon resonance Size distribution 



Authors would like to acknowledge S. Tajmir and N. Mirghasemzadeh for their useful helps and assistance.


  1. 1.
    R. G. Nikov, A. S. Nikolov, N. N. Nedyalkov, I. G. Dimitrov, P. A. Atanasov, and M. T. Alexandrov (2012). Stability of contamination-free gold and silver nanoparticles produced by nanosecond laser ablation of solid targets in water. Appl. Surf. Sci. 258, 9318–9322.CrossRefGoogle Scholar
  2. 2.
    E. Messina, L. D’Urso, E. Fazio, C. Satriano, M. G. Donato, C. D’Andrea, O. M. Marago, P. G. Gucciardi, G. Compagnini, and F. Neri (2012). Tuning the structural and optical properties of gold/silver nano-alloys prepared by laser ablation in liquids for optical limiting, ultra-sensitive spectroscopy, and optical trapping. J. Quant. Spectrosc. Radiat. Transfer 113, 2490–2498.CrossRefGoogle Scholar
  3. 3.
    D. Dorranian, E. Solati, and L. Dejam (2012). Photoluminescence of ZnO nanoparticles generated by laser ablation in deionized water. Appl. Phys. A 109, 307–314.CrossRefGoogle Scholar
  4. 4.
    E. Solati, M. Mashayekh, and D. Dorranian (2013). Effects of laser pulse wavelength and laser fluence on the characteristics of silver nanoparticle generated by laser ablation. Appl. Phys. A 112, 689–694.CrossRefGoogle Scholar
  5. 5.
    H. Han, Y. Fang, Z. Li, and H. Xu (2008). Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation. Appl. Phys. Lett. 92, 023116.CrossRefGoogle Scholar
  6. 6.
    A. V. Simakin, V. V. Voronov, N. A. Kirichenko, and G. A. Shafeev (2004). Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Phys. A 79, 1127–1132.CrossRefGoogle Scholar
  7. 7.
    M. Quinten; Optical Properties of Nanoparticle Systems, Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany, 2011.Google Scholar
  8. 8.
    J. Prikulis, F. Svedberg, and M. Kall (2004). Optical spectroscopy of single trapped metal nanoparticles in solution. Nano Lett. 4, 115–118.CrossRefGoogle Scholar
  9. 9.
    A. S. Nikolov, N. N. Nedyalkov, R. G. Nikov, P. A. Atanasov, and M. T. Alexandrov (2011). Characterization of Ag and Au nanoparticles created by nanosecond pulsed laser ablation in double distilled water. Appl. Surf. Sci. 257, 5278–5282.CrossRefGoogle Scholar
  10. 10.
    S. D. Solomon, M. Bahadory, A. V. Jeyarajasingam, S. A. Rutkowsky, C. Boritz, and L. Mulfinger (2007). Synthesis and study of silver nanoparticles. J. Chem. Educ. 84, 322–325.CrossRefGoogle Scholar
  11. 11.
    N. Mirghassemzadeh, M. Ghamkhari, and D. Dorranian (2013). Dependence of laser ablation produced gold nanoparticles characteristics on the fluence of laser pulse. Soft Nanoscience Letters 3, 101–106.CrossRefGoogle Scholar
  12. 12.
    F. Pei, S. Wu, G. Wang, M. Xu, S. Y. Wang, and L. Y. Chen (2009). Electronic and optical properties of noble metal oxides M_ 2 O (M = Cu, Ag and Au): First-principles study. J. Korean. Phys. Soc. 55, 1243–1249.CrossRefGoogle Scholar
  13. 13.
    S. Link and M. A. El-Sayed (2000). Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19, 409–453.CrossRefGoogle Scholar
  14. 14.
    K. T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad (2006). Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold–silver core–shell nanostructures. Colloids Surf 290, 89–105.CrossRefGoogle Scholar
  15. 15.
    S. A. Maier, Plasmonics: Fundamentals and Applications, Springer Science + Business Media LLC, Library of Congress Control Number: 2006931007, 2007.Google Scholar
  16. 16.
    T. X. Phuoc, Y. Soong, and M. K. Chyu (2007). Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids. Opt. Lasers Eng. 45, 1099–1106.CrossRefGoogle Scholar
  17. 17.
    N. V. Tarasenko, A. V. Butsen, E. A. Nevar, and N. A. Savastenko (2006). Synthesis of nanosized particles during laser ablation of gold in water. Appl. Surf. Sci 252, 4439–4444.CrossRefGoogle Scholar
  18. 18.
    X. Miao, S. Zou, H. Zhang, and L. Ling (2014). Highly sensitive carcinoembryonic antigen detection using Ag@Au core–shell nanoparticles and dynamic light scattering. Sensor. Actuat. B-Chem 191, 396–400.CrossRefGoogle Scholar
  19. 19.
    E. Solati, L. Dejam, and D. Dorranian (2014). Effect of laser pulse energy and wavelength on the structure, morphology and optical properties of ZnO nanoparticles. Opt. Laser. Technol. 58, 26–32.CrossRefGoogle Scholar
  20. 20.
    S. I. Alnassar, E. Akman, B. G. Oztoprak, E. Kacar, O. Gundogdu, A. Khaleel, and A. Demir (2013). Study of the fragmentation phenomena of TiO2 nanoparticles produced by femtosecond laser ablation in aqueous media. Opt. Laser. Technol. 51, 17–23.CrossRefGoogle Scholar
  21. 21.
    E. Akman, B. Genc Oztoprak, M. Gunes, E. Kacar, and A. Demir (2011). Effect of femtosecond Ti: Sapphire laser wavelengths on plasmonic behaviour and size evolution of silver nanoparticles. Photonics Nanostruct. Fundam. Appl. 9, 276–286.CrossRefGoogle Scholar
  22. 22.
    A. Akhavan, H. R. Kalhor, M. Z. Kassaee, N. Sheikh, and M. Hassanlou (2010). Radiation synthesis and characterization of protein stabilized gold nanoparticles. Chem. Eng. J. 159, 230–235.CrossRefGoogle Scholar
  23. 23.
    O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, M Yu Losytskyy, A. V. Kotko, and A. O. Pinchuk (2009). Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica. Phys. Rev. B 79, 235438.CrossRefGoogle Scholar
  24. 24.
    S. Dhara, Sh Chandra, P. Magudapathy, S. Kalavathi, B. K. Panigrahi, K. G. M. Nair, V. S. Sastry, C. W. Hsu, C. T. Wu, K. H. Chen, and L. C. Chen (2004). Blue luminescence of Au nanoclusters embedded in silica matrix. J. Chem. Phys. 121, (24), 12595.CrossRefGoogle Scholar
  25. 25.
    T.S.T. Amran, Md. R. Hashim, N.K. Ali Al-Obaidi, H. Yazid, R. Adnan, Optical absorption and photoluminescence studies of gold nanoparticles deposited on porous silicon, Nanoscale Res. Lett., (2013) 8 35.Google Scholar
  26. 26.
    S. Link and M. El-sayed (2000). Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19, 409–453.CrossRefGoogle Scholar
  27. 27.
    J. I. Kim, D. R. Jung, J. Kim, Ch Nahm, S. Byun, S. Lee, and B. Park (2012). Surface–plasmon-coupled photoluminescence from CdS nanoparticles with Au films. Solid. State. Commun. 152, 1767–1770.CrossRefGoogle Scholar
  28. 28.
    Ch Yang, Y. Zhou, G. An, and X. Zhao (2013). Surface plasmon induced photoluminescence enhancement in the Au–ZnS nanocomposite. Opt. Mater. 35, 2551–2555.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laser Lab., Plasma Physics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations