Advertisement

Journal of Cluster Science

, Volume 25, Issue 5, pp 1401–1411 | Cite as

Hydroxo-Lanthanide Cluster Organic Framework Built by Hexanuclear Cluster Units

  • Wei-Hui Fang
  • Guo-Yu Yang
Original Paper
  • 221 Downloads

Abstract

A novel hydroxo-lanthanide cluster organic framework, Sm3L8(μ 3-OH)(H2O)·H2O (1), derived from the 4-pyridin-4-ylbenzoic acid (HL) has been hydrothermally made and structurally characterized by single crystal X-ray diffraction. Structure analysis shows the hexanuclear Sm6 cluster unit is composed of inorganic tetranuclear hydroxo [Sm4(OH)2]10+ (Sm4) cluster and dimeric [Sm2(COO)4]2+ (Sm2) core. The Sm6 cluster units are connected by L ligands to form a 2D Ln-based cluster organic framework. From the topological point of view, the layer architecture can be described as 4-connected sql net. Furthermore, the elemental analysis, PXRD, IR and TGA are also studied.

Keywords

Lanthanide cluster Hexanuclear Hydrothermal synthesis Sql 

Notes

Acknowledgments

This work was supported by the NSFC (nos. 91122028, 21221001, and 50872133), the 973 Program (nos. 2014CB932101 and 2011CB932504), the NSFC for Distinguished Young Scholars (no. 20725101).

References

  1. 1.
    R. Sessoli and A. K. Powell (2009). Chem. Soc. Rev. 253, 2328.Google Scholar
  2. 2.
    J. R. Lombardi and B. Davis (2002). Chem. Rev. 102, 2431.CrossRefGoogle Scholar
  3. 3.
    O. Mamula, M. Lama, S. G. Telfer, A. Nakamura, R. Kuroda, H. Stoeckli-Evans, and R. Scopelitti (2005). Angew. Chem. Int. Ed. 44, 2527.CrossRefGoogle Scholar
  4. 4.
    B. Q. Ma, D. S. Zhang, S. Gao, T. Z. Jin, C. H. Yan, and G. X. Xu (2000). Angew. Chem. Int. Ed. 39, 3644.CrossRefGoogle Scholar
  5. 5.
    A. Müller, E. Beckmann, H. Bögge, M. Schmidtmann, and A. Dress (2002). Nature 41, 1162.Google Scholar
  6. 6.
    A. J. Tasiopoulos, A. Vinslava, W. Wernsdorfer, K. A. Abboud, and G. Christou (2004). Angew. Chem. Int. Ed. 43, 2117.CrossRefGoogle Scholar
  7. 7.
    D. S. Zhang, B. Q. Ma, T. Z. Jin, S. Gao, C. H. Yan, and T. C. W. Mak (2000). New J. Chem. 24, 61.CrossRefGoogle Scholar
  8. 8.
    M. R. Bürgstein and P. W. Roesky (2000). Angew. Chem. Int. Ed. 39, 549.CrossRefGoogle Scholar
  9. 9.
    R. Y. Wang, H. D. Selby, H. Liu, M. D. Carducci, T. Z. Jin, Z. P. Zheng, J. W. Anthis, and R. J. Staples (2002). Inorg. Chem. 41, 278.CrossRefGoogle Scholar
  10. 10.
    G. Xu, Z. M. Wang, Z. He, Z. Lü, C. S. Liao, and C. H. Yan (2002). Inorg. Chem. 41, 6802.CrossRefGoogle Scholar
  11. 11.
    X. J. Kong, Y. L. Wu, L. S. Long, L. S. Zheng, and Z. P. Zheng (2009). J. Am. Chem. Soc. 131, 6918.CrossRefGoogle Scholar
  12. 12.
    G. Calvez, C. Daiguebonne, and O. Guillou (2011). Inorg. Chem. 50, 2851.CrossRefGoogle Scholar
  13. 13.
    W. H. Fang, L. Cheng, L. Huang, and G. Y. Yang (2013). Inorg. Chem. 52, 6.CrossRefGoogle Scholar
  14. 14.
    M. B. Zhang, J. Zhang, S. T. Zheng, and G. Y. Yang (2005). Angew. Chem. Int. Ed. 44, 1385.CrossRefGoogle Scholar
  15. 15.
    J. W. Cheng, J. Zhang, S. T. Zheng, M. B. Zhang, and G. Y. Yang (2006). Angew. Chem. Int. Ed. 45, 73.CrossRefGoogle Scholar
  16. 16.
    J. W. Cheng, J. Zhang, S. T. Zheng, and G. Y. Yang (2008). Chem. Eur. J. 14, 88.CrossRefGoogle Scholar
  17. 17.
    Y. B. Zhang, H. L. Zhou, R. B. Lin, C. Zhang, J. B. Lin, J. P. Zhang, and X. M. Chen (2012). Nat. Commun. 3, 642.CrossRefGoogle Scholar
  18. 18.
    X. M. Zhang, Y. Q. Wang, Y. Song, and E. Q. Gao (2011). Inorg. Chem. 50, 7284.CrossRefGoogle Scholar
  19. 19.
    M. H. Zeng, Q. X. Wang, Y. X. Tan, S. Hu, H. X. Zhao, L. S. Long, and M. Kurmoo (2010). J. Am. Chem. Soc. 132, 2561.CrossRefGoogle Scholar
  20. 20.
    X. L. Jia, J. Zhou, S. T. Zheng, and G. Y. Yang (2009). J. Cluster Sci. 20, 555.CrossRefGoogle Scholar
  21. 21.
    M. B. Zhang, H. M. Chen, R. X. Hu, and Z. L. Chen (2011). Cryst. Eng. Comm. 13, 7019.CrossRefGoogle Scholar
  22. 22.
    Z. L. Wang, W. H. Fang, and G. Y. Yang (2009). J. Cluster Sci. 20, 725.CrossRefGoogle Scholar
  23. 23.
    W. H. Fang, Z. L. Wang, and G. Y. Yang (2010). J. Cluster Sci. 21, 187.CrossRefGoogle Scholar
  24. 24.
    G. M. Sheldrick SADABS, Program for Siemens Area Detector Absorption Corrections (University of Göttingen, Göttingen, 1997).Google Scholar
  25. 25.
    G. M. Sheldrick SHELXL97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, 1997).Google Scholar
  26. 26.
    G. M. Sheldrick SHELXS97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, 1997).Google Scholar
  27. 27.
    W. H. Fang and G. Y. Yang (2013). Cryst. Eng. Comm. 15, 9504.CrossRefGoogle Scholar
  28. 28.
    L. Sun, G. Z. Li, M. H. Xu, X. J. Li, J. R. Li, and H. Deng Eur. J. Inorg. Chem., 2012. 1764.Google Scholar
  29. 29.
    A. Q. Wu, G. H. Guo, C. Yang, F. K. Zheng, X. Liu, G. C. Guo, J. S. Huang, Z. C. Dong, and Y. Takano Eur. J. Inorg. Chem., 2005. 1947.Google Scholar
  30. 30.
    R. Y. Wang, H. Liu, M. D. Carducci, T. Z. Jin, C. Zheng, and Z. P. Zheng (2001). Inorg. Chem. 40, 2743.CrossRefGoogle Scholar
  31. 31.
    W. H. Wang, H. R. Tian, Z. C. Zhou, Y. L. Feng, and J. W. Cheng (2012). Cryst. Growth Des. 12, 2567.CrossRefGoogle Scholar
  32. 32.
    G. B. Deacon, T. C. Feng, D. C. R. Hockless, P. C. Junk, B. W. Skelton, and A. H. White (1997). Chem. Commun. 50, 341.CrossRefGoogle Scholar
  33. 33.
    M. K. Thompson, A. J. Lough, A. J. P. White, D. J. Williams, and I. A. Kahwa (2003). Inorg. Chem. 42, 4828.CrossRefGoogle Scholar
  34. 34.
    S. Christian, S. Norbert, B. Thomas, and F. Gerard (2004). Inorg. Chem. 43, 3159.CrossRefGoogle Scholar
  35. 35.
    P. H. Lin, T. J. Burchell, L. Ungur, L. F. Chibotaru, W. Wernsdorfer, and M. Murugesu (2009). Angew. Chem. Int. Ed. 48, 9489.CrossRefGoogle Scholar
  36. 36.
    G. Abbas, Y. H. Lan, G. E. Kostakis, W. Wernsdorfer, C. E. Anson, and A. K. Powell (2010). Inorg. Chem. 49, 8067.CrossRefGoogle Scholar
  37. 37.
    D. M. M. Freckmann, T. Dube, C. D. Berube, S. Gambarotta, and G. P. A. Yap (2002). Organometallics 21, 1240.CrossRefGoogle Scholar
  38. 38.
    I. A. Gass, B. Moubaraki, S. K. Langley, S. R. Batten, and K. S. Murray (2012). Chem. Commun. 48, 2089.CrossRefGoogle Scholar
  39. 39.
    Z. P. Zheng (2001). Chem. Commun. 29, 2521.CrossRefGoogle Scholar
  40. 40.
    S. K. Langley, B. Moubaraki, C. M. Forsyth, I. A. Gass, and K. S. Murray (2010). Dalton Trans. 39, 1705.CrossRefGoogle Scholar
  41. 41.
    R. A. Andersen, D. H. Templeton, and A. Zalkin (1978). Inorg. Chem. 17, 1962.CrossRefGoogle Scholar
  42. 42.
    N. Yuan, T. L. Sheng, C. B. Tian, S. M. Hu, R. B. Fu, Q. L. Zhu, C. H. Tan, and X. T. Wu (2011). Cryst. Eng. Comm. 13, 4244.CrossRefGoogle Scholar
  43. 43.
    J. Xu, W. P. Su, and M. C. Hong (2011). Cryst. Growth Des. 11, 337.CrossRefGoogle Scholar
  44. 44.
    I. J. Hewitt, J. Tang, N. T. Madhu, C. E. Anson, Y. Lan, J. Luzon, M. Etienne, R. Sessoli, and A. K. Powell (2010). Angew. Chem. Int. Ed. 49, 6352.CrossRefGoogle Scholar
  45. 45.
    S. Liao, X. Yang, and R. A. Jones (2012). Cryst. Growth Des. 12, 970.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina

Personalised recommendations