Advertisement

Journal of Cluster Science

, Volume 25, Issue 5, pp 1331–1340 | Cite as

Synthesis, Characterization, and Crystal Structure of Tertiary Phosphine-Substituted Diiron Propanedithiolate Complexes

  • Pei-Hua Zhao
  • Sheng-Nan Liu
  • Yun-Feng Liu
  • Ya-Qing Liu
Original Paper

Abstract

As the active site models of [FeFe]-hydrogenase, two new tertiary phosphine-substituted diiron propanedithiolate complexes [(μ-PDT)Fe2(CO)5L] (PDT = SCH2CH2CH2S, L = P(PhMe-m)3, 1; PPh2(CH2CH2CH3), 2) have been prepared through carbonyl substitution reactions of parent complex [(μ-PDT)Fe2(CO)6] (A) with P(PhMe-m)3 or PPh2(CH2CH2CH3) in the presence of the decarbonylating agent Me3NO·2H2O in MeCN at room temperature. The new complexes 1 and 2 were fully characterized by elemental analysis, FT-IR, 1H, 13C{1H}, and 31P{1H} NMR spectroscopy, as well as for 1 by X-ray crystallography. In addition, the crystal structure of 1 has indicated that the phosphorus atom of the P(PhMe-m)3 ligand resides in an apical position of the pseudo-square-pyramidal geometry of the tertiary phosphine-coordinated Fe2 atom.

Keywords

Diiron propanedithiolate complexes Tertiary phosphine ligand Carbonyl substitution Synthesis Crystal structure 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21301160) and the Natural Science Foundation for Young Scholars of Shanxi Province (No. 2012021007-4).

References

  1. 1.
    J. F. Capon, F. Gloaguen, P. Schollhammer, and J. Talarmin (2005). Coord. Chem. Rev. 249, 1664.CrossRefGoogle Scholar
  2. 2.
    C. Tard and C. J. Pickett (2009). Chem. Rev. 109, 2245.CrossRefGoogle Scholar
  3. 3.
    M. Fontecave and V. Artero (2011). C. R. Chimie 14, 362.CrossRefGoogle Scholar
  4. 4.
    F. Wang, W. G. Wang, H. Y. Wang, G. Si, C. H. Tung, and L. Z. Wu (2012). ACS Catal. 2, 407.CrossRefGoogle Scholar
  5. 5.
    S. O. Wenk, D. J. Qian, T. Wakayama, C. Nakamura, N. Zorin, M. Rögner, and J. Miyake (2002). Int. J. Hydrogen Energy 27, 1489.CrossRefGoogle Scholar
  6. 6.
    S. V. Morozov, P. M. Vignais, L. Cournac, N. A. Zorin, E. E. Karyakina, A. A. Karyakin, and S. Cosnier (2002). Int. J. Hydrogen Energy 27, 1501.CrossRefGoogle Scholar
  7. 7.
    J. W. Peters, W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt (1998). Science 282, 1853.CrossRefGoogle Scholar
  8. 8.
    Y. Nicolet, C. Piras, P. Legrand, E. C. Hatchikian, and J. C. Fontecilla-Camps (1999). Structure 7, 13.CrossRefGoogle Scholar
  9. 9.
    A. Le Cloirec, S. P. Best, S. C. Davies, D. J. Evans, D. L. Hughes, and C. J. Pickett (1999). Chem. Commun. 22, 2285.CrossRefGoogle Scholar
  10. 10.
    H. Fan and M. B. Hall (2001). J. Am. Chem. Soc. 123, 3828.CrossRefGoogle Scholar
  11. 11.
    J. X. Jian, Q. Liu, Z. J. Li, F. Wang, X. B. Li, C. B. Li, B. Liu, Q. Y. Meng, B. Chen, K. Feng, C. H. Tung, and L. Z. Wu (2013). Nat. Commun. 4, 2695.CrossRefGoogle Scholar
  12. 12.
    X. F. Liu (2014). J. Organomet. Chem. 750, 117.CrossRefGoogle Scholar
  13. 13.
    P. A. Lindahl and J. A. Kovacs (1999). J. Clust. Sci. 1, 29.CrossRefGoogle Scholar
  14. 14.
    Y. L. Li, B. Xie, L. K. Zou, X. L. Zhang, and X. Li (2012). J. Organmet. Chem. 718, 74.CrossRefGoogle Scholar
  15. 15.
    X. F. Liu and H. Q. Gao (2014). J. Clust. Sci. 25, 367.CrossRefGoogle Scholar
  16. 16.
    X. F. Liu and H. Q. Gao (2014). J. Clust. Sci. 25, 495.CrossRefGoogle Scholar
  17. 17.
    P. H. Zhao, Y. Q. Liu, and X. H. Li (2013). Asian J. Chem. 25, 5428.Google Scholar
  18. 18.
    C. G. Li, Y. Zhu, X. X. Jiao, and X. Q. Fu (2014). Polyhedron 67, 416.CrossRefGoogle Scholar
  19. 19.
    L. C. Song, P. H. Zhao, Z. Q. Du, M. Y. Tang, and Q. M. Hu (2010). Organometallic 29, 5751.CrossRefGoogle Scholar
  20. 20.
    L. C. Song, X. J. Sun, P. H. Zhao, J. P. Li, and H. B. Song (2012). Dalton Trans. 41, 8941.CrossRefGoogle Scholar
  21. 21.
    P. H. Zhao, Y. Q. Liu, and G. Z. Zhao (2013). Polyhedron 53, 144.CrossRefGoogle Scholar
  22. 22.
    P. H. Zhao, Y. F. Liu, K. K. Xiong, and Y. Q. Liu (2014). J. Clust. Sci. doi: 10.1007/s10876-014-0689-1.Google Scholar
  23. 23.
    E. J. Lyon, I. P. Georgakaki, J. H. Reibenspies, and M. Y. Darensbourg (1999). Angew. Chem. Int. Ed. 38, 3178.CrossRefGoogle Scholar
  24. 24.
    CRYSTALCLEAR 1.3.6. (2005) Rigaku and Rigaku/MSC. The Woodlands, TX.Google Scholar
  25. 25.
    G. M. Sheldrick SHELXS97, A Program for Crystal Structure Solution (University of Göttingen, Germany, 1997).Google Scholar
  26. 26.
    G. M. Sheldrick SHELXL97, A Program for Crystal Structure Refinement (University of Göttingen, Germany, 1997).Google Scholar
  27. 27.
    D. Chong, I. P. Georgakaki, R. Mejia-Rodriguez, J. Sanabria-Chinchilla, M. P. Soriaga, and M. Y. Darensbourg (2003). J. Chem. Soc. Dalton Trans. 21, 4158.CrossRefGoogle Scholar
  28. 28.
    P. Li, M. Wang, C. J. He, G. H. Li, X. Y. Liu, C. N. Chen, B. Åkermark, and L. Sun (2005). Eur. J. Inorg. Chem. 2506.Google Scholar
  29. 29.
    Z. Wang, W. F. Jiang, J. H. Liu, W. N. Jiang, Y. Wang, B. Åkermark, and L. Sun (2008). J. Organomet. Chem. 693, 2828.CrossRefGoogle Scholar
  30. 30.
    Z. B. Zhao, M. Wang, W. B. Dong, P. Li, Z. Yua, and L. Sun (2009). J. Organomet. Chem. 694, 2309.CrossRefGoogle Scholar
  31. 31.
    X. F. Liu and H. Q. Gao (2013). Polyhedron 65, 1.CrossRefGoogle Scholar
  32. 32.
    Y. C. Liu, C. H. Lee, G. H. Lee, and M. H. Chiang (2011). Eur. J. Inorg. Chem. 17, 1155.CrossRefGoogle Scholar
  33. 33.
    Y. C. Liu, T. H. Yen, Y. J. Tseng, C. H. Hu, G. H. Lee, and M. H. Chiang (2012). Inorg. Chem. 51, 5997.CrossRefGoogle Scholar
  34. 34.
    R. Mejia-Rodriguez, D. Chong, J. H. Reibenspies, M. P. Soriaga, and M. Y. Darensbourg (2004). J. Am. Chem. Soc. 126, 12004.CrossRefGoogle Scholar
  35. 35.
    J. Hou, X. J. Peng, Z. Y. Zhou, S. G. Sun, X. Zhao, and S. Gao (2006). J. Organomet. Chem. 691, 4633.CrossRefGoogle Scholar
  36. 36.
    C. M. Thomas, O. Rudiger, T. B. Liu, C. E. Carson, M. B. Hall, and M. Y. Darensbourg (2007). Organometallic 26, 3976.CrossRefGoogle Scholar
  37. 37.
    G. Durgaprasad, R. Bolligarla, and S. K. Das (2011). J. Organomet. Chem. 696, 3097.CrossRefGoogle Scholar
  38. 38.
    M. El-khateeb, M. Harb, Q. Abu-Salem, H. Görls, and W. Weigand (2013). Polyhedron 61, 1.CrossRefGoogle Scholar
  39. 39.
    P. H. Zhao and Y. F. Liu (2013). Mol. Cryst. Liq. Cryst. 587, 113.CrossRefGoogle Scholar
  40. 40.
    Y. F. Liu, W. J. Liang, P. H. Zhao, X. H. Li, S. N. Liu, and Y. Q. Liu (2014). Mol. Cryst. Liq. Cryst. doi: 10.1080/15421406.2013.875740.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, College of Materials Science and EngineeringNorth University of ChinaTaiyuanPeople’s Republic of China
  2. 2.College of Public HealthShanxi Medical UniversityTaiyuanPeople’s Republic of China

Personalised recommendations