Journal of Cluster Science

, Volume 25, Issue 4, pp 1069–1084 | Cite as

Temperature-Dependent Organic Functionalization of {Ni6PW9} Species: from Isolated Clusters to 1D Chain

Original Paper


Four new hexa-nickel(II)-substituted Keggin-type tungstophosphates [Ni63-OH)3(oeen)3(H2O)3(B-α-PW9O34)]·6H2O (1, oeen = N-(2-hydroxyethyl)enediamine), [Ni63-OH)3(oeen)3(H2O)4(B-α-PW9O34)]2·13H2O (2), [Ni63-OH)3(oeen)2(tran)(H2O)3(B-α-PW9O34)]·3H2O (3, tran = 1,4,7-triazonane) and [Ni63-OH)3(oeen)2(tran)(H2O)2(B-α-PW9O34)]·6H2O (4) have hydrothermally made by controlling their reaction temperatures. 14 have been characterized by elemental analyses, IR spectra, powder X-ray diffraction, thermogravimetric analyses and single-crystal X-ray diffraction, respectively. Structural analyses reveal that they consist of {Ni63-OH)3(H2O) n }9+ cores and B-α-PW9O34 (PW9) units, and further are stabilized by organic neutral oeen/tran molecules. 13 are isolated clusters while 4 is the 1D chain structure. It should be noted that the tran molecules in 3 and 4 are derived from the oeen molecules in the starting materials.


Polyoxometalate Temperature-dependent synthesis Hydrothermal reaction Lacunary precursor Organic functionalization 



This work was supported by the NNSF of China (Nos. 91122028, 21221001, 50872133, 21101055, 21301049 and U1304208), the NNSF for Distinguished Young Scholars of China (No. 20725101), and the 973 program (Nos. 2014CB932101 and 2011CB932504).


  1. 1.
    M. T. Pope Heteropoly and Isopoly Oxometalates (Springer-Verlag, Berlin, 1983).CrossRefGoogle Scholar
  2. 2.
    C. L. Hill (1998). Chem. Rev. 98, 1.CrossRefGoogle Scholar
  3. 3.
    D. L. Long, E. Burkholder, and L. Cronin (2007). Chem. Soc. Rev. 36, 105.CrossRefGoogle Scholar
  4. 4.
    S.-T. Zheng and G.-Y. Yang (2012). Chem. Soc. Rev. 41, 7623.CrossRefGoogle Scholar
  5. 5.
    J. M. Clemente-Juan and E. Coronado (1999). Coord. Chem. Rev. 193–195, 361.CrossRefGoogle Scholar
  6. 6.
    A. Sartorel, M. Bonchio, S. Campagnab, and F. Scandola (2013). Chem. Soc. Rev. 42, 2262.CrossRefGoogle Scholar
  7. 7.
    M. N. Sokolov, I. V. Kalinina, E. V. Peresypkina, E. Cadot, S. V. Tkachev, and V. P. Fedin (2008). Angew. Chem. Int. Ed. 47, 1465.CrossRefGoogle Scholar
  8. 8.
    S.-T. Zheng, D.-Q. Yuan, H.-P. Jia, J. Zhang, and G.-Y. Yang (2007). Chem. Commun. 43, 1858.CrossRefGoogle Scholar
  9. 9.
    S.-T. Zheng, J. Zhang, and G.-Y. Yang (2008). Angew. Chem. Int. Ed. 47, 3909.CrossRefGoogle Scholar
  10. 10.
    C. N. R. Rao, J. N. Behera, and M. Dan (2006). Chem. Soc. Rev. 35, 375.CrossRefGoogle Scholar
  11. 11.
    Y. Q. Hou and C. L. Hill (1993). J. Am. Chem. Soc. 115, 11823.CrossRefGoogle Scholar
  12. 12.
    Y. G. Wei, B. B. Xu, C. L. Barnes, and Z. H. Peng (2001). J. Am. Chem. Soc. 123, 4083.CrossRefGoogle Scholar
  13. 13.
    A. Proust, B. Matt, R. Villanneau, G. Guillemot, P. Gouzerha, and G. Izzeta (2012). Chem. Soc. Rev. 41, 7605.CrossRefGoogle Scholar
  14. 14.
    J.-W. Zhao, H.-P. Jia, J. Zhang, S.-T. Zheng, and G.-Y. Yang (2007). Chem. Eur. J. 14, 10030.CrossRefGoogle Scholar
  15. 15.
    S.-T. Zheng, J. Zhang, J. M. Clemente-Juan, D.-Q. Yuan, and G.-Y. Yang (2009). Angew. Chem., Int. Ed. 48, 7176.CrossRefGoogle Scholar
  16. 16.
    B. Li, J.-W. Zhao, S.-T. Zheng, and G.-Y. Yang (2009). Chin. J. Struct. Chem. 28, 519.Google Scholar
  17. 17.
    S.-T. Zheng, J. Zhang, and G.-Y. Yang (2010). J. Am. Chem. Soc. 132, 15102.CrossRefGoogle Scholar
  18. 18.
    X.-X. Li, S.-T. Zheng, W.-H. Fang, and G.-Y. Yang (2011). Inorg. Chem. Commun. 14, 1541.CrossRefGoogle Scholar
  19. 19.
    X.-X. Li, S.-T. Zheng, J. Zhang, W.-H. Fang, G.-Y. Yang, and J. M. Clemente-Juan (2011). Chem. Eur. J. 17, 13032.CrossRefGoogle Scholar
  20. 20.
    L. Huang, J. Zhang, L. Cheng, and G.-Y. Yang (2012). Chem. Commun. 48, 9658.CrossRefGoogle Scholar
  21. 21.
    E. Y. Lee and M. P. Suh (2004). Angew. Chem. Int. Ed. 43, 2798.CrossRefGoogle Scholar
  22. 22.
    J.-P. Zhang, Y.-Y. Lin, W.-X. Zhang, and X.-M. Chen (2005). J. Am. Chem. Soc. 127, 14162.CrossRefGoogle Scholar
  23. 23.
    C.-D. Wu and W. Lin (2005). Angew. Chem. Int. Ed. 44, 1958.CrossRefGoogle Scholar
  24. 24.
    Z. F. He, Y. Yan, B. Li, H. Ai, H. B. Wang, H. L. Li, and L. X. Wu (2012). Dalton Trans. 41, 10043.CrossRefGoogle Scholar
  25. 25.
    P. J. Domaille (1990). Inorg. Synth. 27, 100.Google Scholar
  26. 26.
    Agilent CrysAlis PRO (Agilent Technologies, Yarnton, 2011).Google Scholar
  27. 27.
    G. M. Sheldrick SADABS, Program for Siemens Area Detector Absorption Corrections (University of Göttingen, Göttingen, 1997).Google Scholar
  28. 28.
    G. M. Sheldrick SHELXS97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, 1997).Google Scholar
  29. 29.
    G. M. Sheldrick SHELXL97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, 1997).Google Scholar
  30. 30.
    R. Nasanen, L. Lemmetti, and S. Ulmanen (1969). Suom. Kemistil. B 42, 266.Google Scholar
  31. 31.
    S.-T. Zheng, M.-H. Wang, and G.-Y. Yang (2007). Inorg. Chem. 46, 9503.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.MOE Key Laboratory of Cluster Science, School of ChemistryBeijing Institute of TechnologyBeijingChina
  2. 2.Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical EngineeringHenan UniversityKaifengChina
  3. 3.State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina

Personalised recommendations