Journal of Cluster Science

, Volume 25, Issue 3, pp 839–854 | Cite as

Chitosan-Polyoxometalate Nanocomposites: Synthesis, Characterization and Application as Antimicrobial Agents

  • G. Fiorani
  • O. Saoncella
  • P. Kaner
  • S. A. Altinkaya
  • A. Figoli
  • M. Bonchio
  • M. Carraro
Original Paper


Polyoxometalates (POMs) were used, together with chitosan (CS), to obtain hybrid nanoaggregates. Three representative POMs were efficiently assembled into nanoparticles of few hundred nm diameter, featuring entangled ribbons substructure. In order to establish suitable preparation and stability conditions, the assemblies were characterized in solution by UV–Vis spectroscopy, dynamic light scattering and ζ-potential. The nanoparticles were tested against E. coli (106 CFU/ml) in aqueous solution, showing a synergic activity of the heteropolyacid H5PMo10V2O40 and CS. For such components, a highly porous and antibacterial film was obtained upon lyophilisation of the colloidal mixture.


Chitosan Polyoxometalates Nanoparticles Antimicrobial activity Porous film 



The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n°246039 and from MIUR (FIRB prot. RBAP11ETKA). We would like to thank the Biotechnology and Bioengineering Application and Research Center staff at the Izmir Institute of Technology for their kind help and technical support. We also thank Dr. Claudio Furlan, CUGAS—University of Padova, for ESEM and EDAX analyses, and Dr. Federico Caicci, Biology Department, University of Padova, for TEM analysis.

Supplementary material

10876_2013_685_MOESM1_ESM.doc (8.5 mb)
Supplementary data associated with this article can be found in the online version: DLS and ζ-potential graphs, TEM, UV–Vis, FT-IR, ESEM and EDX analyses. (DOC 8729 kb)


  1. 1.
    Polyoxometalates Cluster Science Issue, U. Kortz and T. Liu (guest eds), (2013). Eur. J. Inorg. Chem. 2013, 7325.Google Scholar
  2. 2.
    D. L. Long, E. Burkholder, and L. Cronin (2007). Chem. Soc. Rev. 36, 105.CrossRefGoogle Scholar
  3. 3.
    M. T. Pope and A. Müller (1991). Angew. Chem. Int. Ed. 30, 34.CrossRefGoogle Scholar
  4. 4.
    J. T. Rhule, C. L. Hill, and D. A. Judd (1998). Chem. Rev. 98, 327.CrossRefGoogle Scholar
  5. 5.
    H. Stephan, M. Kubeil, F. Emmerling, and C. E. Muller (2013). Eur. J. Inorg. Chem. 2013, 1585.Google Scholar
  6. 6.
    P. Sami, T. D. Anand, M. Premanathan, and K. Rajasekaran (2010). Transition Met. Chem. 35, 1019.CrossRefGoogle Scholar
  7. 7.
    T. Yamase, N. Fukuda, and Y. Tajima (1996). Biol. Pharm. Bull. 19, 459.CrossRefGoogle Scholar
  8. 8.
    N. Fukuda, T. Yamase, and Y. Tajima (1999). Biol. Pharm. Bull. 22, 463.CrossRefGoogle Scholar
  9. 9.
    M. Inoue, T. Suzuki, Y. Fujita, M. Oda, N. Matsumoto, and T. Yamase (2006). J. Inorg. Biochem. 100, 1225.CrossRefGoogle Scholar
  10. 10.
    M. Barsukova-Stuckart, L. F. Piedra-Garza, B. Gautam, G. Alfaro-Espinoza, N. V. Izarova, A. Banerjee, B. S. Bassil, M. S. Ullrich, H. J. Breunig, C. Silvestru, and U. Kortz (2012). Inorg. Chem. 51, 12015.CrossRefGoogle Scholar
  11. 11.
    N. Fukuda and T. Yamase (1997). Biol. Pharm. Bull. 20, 927.CrossRefGoogle Scholar
  12. 12.
    Y. M. Kong, L. N. Pan, J. Peng, B. Xue, J. Lu, and B. X. Dong (2007). Mater. Lett. 61, 2393.CrossRefGoogle Scholar
  13. 13.
    F.-C. Yang, K.-H. Wu, W.-P. Lin, and M.-K. Hu (2009). Microporous Mesoporous Mater. 118, 467.CrossRefGoogle Scholar
  14. 14.
    K. H. Wu, P. Y. Yu, C. C. Yang, G. P. Wang, and C. M. Chao (2009). Polym. Degrad. Stab. 94, 1411.CrossRefGoogle Scholar
  15. 15.
    F. Carn, N. Steunou, M. Djabourov, T. Coradin, F. Ribot, and J. Livage (2008). Soft Matter 4, 735.CrossRefGoogle Scholar
  16. 16.
    K. I. Draget, K. M. Varum, E. Moen, H. Gynnild, and O. Smidsrod (1992). Biomaterials 13, 635.CrossRefGoogle Scholar
  17. 17.
    E. Guibal (2004). Sep. Purif. Technol. 38, 43.CrossRefGoogle Scholar
  18. 18.
    R. Guo, Y. Cheng, D. Ding, X. L. Li, L. Y. Zhang, X. Q. Jiang, and B. R. Liu (2011). Macromol. Biosci. 11, 839.CrossRefGoogle Scholar
  19. 19.
    A. J. Varma, S. V. Deshpande, and J. F. Kennedy (2004). Carbohydr. Polym. 55, 77.CrossRefGoogle Scholar
  20. 20.
    E. Guibal (2005). Prog. Polym. Sci. 30, 71.CrossRefGoogle Scholar
  21. 21.
    D. J. Macquarrie and J. J. E. Hardy (2005). Ind. Eng. Chem. Res. 44, 8499.CrossRefGoogle Scholar
  22. 22.
    R. A. A. Muzzarelli (2009). Carbohydr. Polym. 76, 167.CrossRefGoogle Scholar
  23. 23.
    H. Peniche and C. Peniche (2011). Polym. Int. 60, 883.CrossRefGoogle Scholar
  24. 24.
    J. K. F. Suh and H. W. T. Matthew (2000). Biomaterials 21, 2589.CrossRefGoogle Scholar
  25. 25.
    R. A. A. Muzzarelli (1996). Carbohydr. Polym. 29, 309.CrossRefGoogle Scholar
  26. 26.
    S. Roller and N. Covill (1999). Int. J. Food Microbiol. 47, 67.CrossRefGoogle Scholar
  27. 27.
    S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian (1999). Water Res. 33, 2469.CrossRefGoogle Scholar
  28. 28.
    A. Bhatnagar and M. Sillanpää (2009). Adv. Colloid Interface Sci. 152, 26.CrossRefGoogle Scholar
  29. 29.
    G. Crini (2005). Prog. Polym. Sci. 30, 38.CrossRefGoogle Scholar
  30. 30.
    L. Dambies, T. Vincent, A. Domard, and E. Guibal (2001). Biomacromolecules 2, 1198.CrossRefGoogle Scholar
  31. 31.
    Q. L. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li, and P. J. J. Alvarez (2008). Water Res. 42, 4591.CrossRefGoogle Scholar
  32. 32.
    J. Vinšová and E. Vavříková (2011). Curr. Pharm. Design 17, 3596.CrossRefGoogle Scholar
  33. 33.
    G. Geisberger, E. B. Gyenge, D. Hinger, A. Kach, C. Maake, and G. R. Patzke (2013). Biomacromolecules 14, 1010.CrossRefGoogle Scholar
  34. 34.
    E. I. Rabea, M. E. T. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut (2003). Biomacromolecules 4, 1457.CrossRefGoogle Scholar
  35. 35.
    N. R. Sudarshan, D. G. Hoover, and D. Knorr (1992). Food Biotechnol. 6, 257.CrossRefGoogle Scholar
  36. 36.
    D. Raafat and H. G. Sahl (2009). Microb. Biotech. 2, 186.CrossRefGoogle Scholar
  37. 37.
    H. Tang, P. Zhang, T. L. Kieft, S. J. Ryan, S. M. Baker, W. P. Wiesmann, and S. Rogelj (2010). Acta Biomaterialia 6, 2562.CrossRefGoogle Scholar
  38. 38.
    T. Meissner, R. Bergmann, J. Oswald, K. Rode, H. Stephan, W. Richter, H. Zanker, W. Kraus, F. Emmerling, and G. Reck (2006). Transition Met. Chem. 31, 603.CrossRefGoogle Scholar
  39. 39.
    D. Menon, R. T. Thomas, S. Narayanan, S. Maya, R. Jayakumar, F. Hussain, V. K. Lakshmanan, and S. V. Nair (2011). Carbohydr. Polym. 84, 887.CrossRefGoogle Scholar
  40. 40.
    G. Geisberger, S. Paulus, E. B. Gyenge, C. Maake, and G. R. Patzke (2011). Small 7, 2808.CrossRefGoogle Scholar
  41. 41.
    G. Geisberger, E. B. Gyenge, C. Maake, and G. R. Patzke (2013). Carbohydr. Polym. 91, 58.CrossRefGoogle Scholar
  42. 42.
    G. Geisberger, S. Paulus, M. Carraro, M. Bonchio, and G. R. Patzke (2011). Chem. Eur. J. 17, 4619.CrossRefGoogle Scholar
  43. 43.
    K. Pamin, B. Jachimska, K. Onik, J. Poltowicz, and R. Grabowski (2009). Catal. Lett. 127, 167.CrossRefGoogle Scholar
  44. 44.
    M. Yamada and A. Maeda (2009). Polymer 50, 6076.CrossRefGoogle Scholar
  45. 45.
    H. M. L. Kang, Y. Yu, H. Pang, Y. Song, and D. Zhang (2013). Sensor. Actuat. B 177, 270.CrossRefGoogle Scholar
  46. 46.
    J. H. Dawei Fan (2009). J. Phys. Chem. B 113, 7513.CrossRefGoogle Scholar
  47. 47.
    Y. P. Shan, G. C. Yang, Y. T. Jia, J. Gong, Z. M. Su, and L. Y. Qu (2007). Electrochem. Commun. 9, 2224.CrossRefGoogle Scholar
  48. 48.
    A. Anitha, V. V. D. Rani, R. Krishna, V. Sreeja, N. Selvamurugan, S. V. Nair, H. Tamura, and R. Jayakumar (2009). Carbohydr. Polym. 78, 672.CrossRefGoogle Scholar
  49. 49.
    S. P. Chen, G. Z. Wu, D. W. Long, and Y. D. Liu (2006). Carbohydr. Polym. 64, 92.CrossRefGoogle Scholar
  50. 50.
    Y. H. Feng, Z. G. Han, J. Peng, J. Lu, B. Xue, L. Li, H. Y. Ma, and E. B. Wang (2006). Mater. Lett. 60, 1588.CrossRefGoogle Scholar
  51. 51.
    M. Aureliano and R. M. C. Gandara (2005). J. Inorg. Biochem. 99, 979.CrossRefGoogle Scholar
  52. 52.
    I. V. Kozhevnikov (1998). Chem. Rev. 98, 171.CrossRefGoogle Scholar
  53. 53.
    C. Tanielian (1998). Coord. Chem. Rev. 178, 1165.CrossRefGoogle Scholar
  54. 54.
    R. Bodmeier, K. H. Oh, and Y. Pramar (1989). Drug Dev. Ind. Pharm. 15, 1475.CrossRefGoogle Scholar
  55. 55.
    Y. Kawashima, T. Handa, A. Kasai, H. Takenaka, S. Y. Lin, and Y. Ando (1985). J. Pharm. Sci. 74, 264.CrossRefGoogle Scholar
  56. 56.
    E. Chinea, D. Dakternieks, A. Duthie, C. A. Ghilardi, P. Gill, A. Mederos, S. Midollini, and A. Orlandini (2000). Inorg. Chim. Acta 298, 172.CrossRefGoogle Scholar
  57. 57.
    G. A. Tsigdinos and C. J. Hallanda (1968). Inorg. Chem. 7, 437.CrossRefGoogle Scholar
  58. 58.
    D. C. Duncan, T. L. Netzel, and C. L. Hill (1995). Inorg. Chem. 34, 4640.CrossRefGoogle Scholar
  59. 59.
    J. H. Pa and T. L. Yu (2001). Macromol. Chem. Phys. 202, 985.CrossRefGoogle Scholar
  60. 60.
    S. Tripathy, S. Das, S. P. Chakraborty, S. K. Sahu, P. Pramanik, and S. Roy (2012). Int. J. Pharm. 434, 292.CrossRefGoogle Scholar
  61. 61.
    G. Liu, T. B. Liu, S. S. Mal, and U. Kortz (2006). J. Am. Chem. Soc. 128, 10103.CrossRefGoogle Scholar
  62. 62.
    M. Aureliano and D. C. Crans (2009). J. Inorg. Biochem. 103, 536.CrossRefGoogle Scholar
  63. 63.
    X. H. Wang, J. F. Liu, and M. T. Pope (2003). Dalton Trans. 2003, 957.Google Scholar
  64. 64.
    N. Liu, X. G. Chen, H. J. Park, C. G. Liu, C. S. Liu, X. H. Meng, and L. J. Yu (2006). Carbohydr. Polym. 64, 60.CrossRefGoogle Scholar
  65. 65.
    K. Xing, X. G. Chen, M. Kong, C. S. Liu, D. S. Cha, and H. J. Park (2009). Carbohydr. Polym. 76, 17.CrossRefGoogle Scholar
  66. 66.
    Y. Ma, P. T. Liu, C. L. Si, and Z. Liu (2010). J. Macromol. Sci., Phys 49, 994.CrossRefGoogle Scholar
  67. 67.
    S. W. Ali, M. Joshi, and S. Rajendran (2011). Adv. Sci. Lett. 3, 452.CrossRefGoogle Scholar
  68. 68.
    A. L. Neal (2008). Ecotoxicology 17, 362.CrossRefGoogle Scholar
  69. 69.
    M. W. Calhoun and R. B. Gennis (1993). J. Bacteriol. 175, 3013.Google Scholar
  70. 70.
    M. Ammam and E. B. Easton (2013). J. Solid State Electrochem. 17, 137.CrossRefGoogle Scholar
  71. 71.
    L. H. Bi, U. Kortz, M. H. Dickman, S. Nellutla, N. S. Dalal, B. Keita, L. Nadjo, M. Prinz, and M. Neumann (2006). J. Cluster Sci. 17, 143.CrossRefGoogle Scholar
  72. 72.
    Y. L. Li, X. R. Yang, F. Yang, Y. P. Wang, P. H. Zheng, and X. X. Liu (2012). Electrochim. Acta 66, 188.CrossRefGoogle Scholar
  73. 73.
    P. Sami and K. Rajasekaran (2009). J. Chem. Sci. 121, 155.CrossRefGoogle Scholar
  74. 74.
    M. Vairalakshmi, V. Raj, P. Sami, and K. Rajasekaran (2011). Transition Met. Chem. 36, 875.CrossRefGoogle Scholar
  75. 75.
    T. Yokota, S. Fujibayashi, Y. Nishiyama, S. Sakaguchi, and Y. Ishii (1996). J. Mol. Catal. A 114, 113.CrossRefGoogle Scholar
  76. 76.
    I. V. Kozhevnikov (1997). J. Mol. Catal. A 117, 151.CrossRefGoogle Scholar
  77. 77.
    R. Neumann (2010). Inorg. Chem. 49, 3594.CrossRefGoogle Scholar
  78. 78.
    C. L. Hill and C. M. Prosser-McCartha Photosensitization and photocatalysis using inorganic and organometallic compounds (Kluver Academic Publishers, Dordrecht, 1997).Google Scholar
  79. 79.
    W. L. Du, S. S. Niu, Y. L. Xu, Z. R. Xu, and C. L. Fan (2009). Carbohydr. Polym. 75, 385.CrossRefGoogle Scholar
  80. 80.
    C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. H. Tam, J. F. Chiu, and C. M. Che (2007). J. Biol. Inorg. Chem. 12, 527.CrossRefGoogle Scholar
  81. 81.
    N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, and M. Q. Zhang (2005). Biomaterials 26, 6176.CrossRefGoogle Scholar
  82. 82.
    M. Y. Kim and J. Lee (2011). Carbohydr. Polym. 84, 1329.CrossRefGoogle Scholar
  83. 83.
    Q. C. Zhao, X. D. Feng, S. L. Mei, and Z. X. Jin (2009). Nanotechnology 20, 105101.Google Scholar
  84. 84.
    H. L. Tan, S. R. Guo, S. B. Yang, X. F. Xu, and T. T. Tang (2012). Acta Biomaterialia 8, 2166.CrossRefGoogle Scholar
  85. 85.
    L. Ma, C. Y. Gao, Z. W. Mao, J. Zhou, J. C. Shen, X. Q. Hu, and C. M. Han (2003). Biomaterials 24, 4833.CrossRefGoogle Scholar
  86. 86.
    K. Saita, S. Nagaoka, T. Shirosaki, M. Horikawa, S. Matsuda, and H. Ihara (2012). Carbohydr. Res. 349, 52.CrossRefGoogle Scholar
  87. 87.
    Z. M. Cui, W. Xing, C. P. Liu, J. H. Liao, and H. Zhang (2009). J. Power Sources 188, 24.CrossRefGoogle Scholar
  88. 88.
    S. P. Liu, L. Xu, F. Y. Li, W. H. Guo, Y. Xing, and Z. X. Sun (2011). Electrochim. Acta 56, 8156.CrossRefGoogle Scholar
  89. 89.
    I. Leceta, P. Guerrero, and K. de la Caba (2013). Carbohydr. Polym. 93, 339.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.ITM-CNR and Department of Chemical SciencesUniversity of PadovaPaduaItaly
  2. 2.Department of Chemical EngineeringIzmir Institute of TechnologyUrlaTurkey
  3. 3.ITM-CNRRendeItaly

Personalised recommendations