Skip to main content
Log in

Immediate Formation/Precipitation of Icosahedrally Structured Iron–Molybdenum Mixed Oxides from Solutions Upon Mixing Simple Iron(III) and Molybdate Salts

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present investigation refers to nanostructured mixed metal oxides—more specifically to iron–molybdenum oxides most simply obtained by addition of iron(III) chloride to an aqueous solution of sodium molybdate acidified with acetic acid. The immediately obtained yellow non-crystalline solid consists of highly symmetrical icosahedral {Mo72Fe30} motifs which is proven by IR, Raman, 57Fe Mössbauer and XP spectra. This remarkable result is obtained in spite of the immediate precipitation of the mentioned compound and even from an inhomogeneous mixture of the educts. This again proves the high formation tendency of spherical clusters. The procedure offers in principle the option to encapsulate species present in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. A. Cox Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties (Oxford University Press, Oxford, 2010).

    Google Scholar 

  2. J. A. Rodrigez and M. Fernández-García Synthesis, Properties and Applications of Oxide Nanomaterials (Wiley, Hoboken, 2007).

    Book  Google Scholar 

  3. W. T. Schaller (1907). Am. J. Sci. 23, 297–303.

    Article  CAS  Google Scholar 

  4. P. F. Kerr, A. W. Thomas, and A. M. Langer (1963). Am. Miner. 48, 14–32.

    CAS  Google Scholar 

  5. J. W. Antony, R. A. Bideaux, K. W. Bladh, and M. C. Nichols Handbook of Mineralogy (Mineral Data Publishing, Tucson, 1990).

    Google Scholar 

  6. W. D. Birch, A. Pring, E. M. McBriar, B. M. Gatehouse, and C. A. McCammon (1998). Am. Miner. 83, 172–177.

    CAS  Google Scholar 

  7. H.-Y. Chen (1979). Mater. Res. Bull. 14, 1583–1590.

    Article  CAS  Google Scholar 

  8. W. Jeitschko, A. W. Sleight, W. R. McClellan, and J. F. Weiher (1976). Acta. Cryst. B32, 1163–1170.

    Article  CAS  Google Scholar 

  9. G. Jin, W. Weng, Z. Lin, N. F. Dummer, S. H. Taylor, C. J. Kiely, J. K. Bartley, and G. J. Hutchings (2012). J. Catal. 296, 55–64.

    Article  CAS  Google Scholar 

  10. J.-H. Park, H. Noh, J. W. Park, K. Row, K. D. Jung, and C.-H. Shin (2012). Appl. Catal. A 431, 137–143.

    Article  Google Scholar 

  11. B. P. Hahn, J. W. Long, A. N. Mansour, K. A. Pettigrew, M. S. Osofsly, and D. R. Rolison (2011). Energy Environ. Sci. 4, 1495–1502.

    Article  CAS  Google Scholar 

  12. F. K. Patterson, C. W. Moeller, and R. C. Ward (1963). Inorg. Chem. 2, 196–198.

    Article  CAS  Google Scholar 

  13. K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura (1998). Nature 395, 677–680.

    Article  CAS  Google Scholar 

  14. A. Müller, S. Sarkar, S. Q. N. Shah, H. Bögge, M. Schmidtmann, Sh. Sarkar, P. Kögerler, B. Hauptfleisch, A. X. Trautwein, and V. Schünemann (1999). Angew. Chem. Int. Ed. 38, 3238–3241.

    Article  Google Scholar 

  15. A. Müller, E. Krickemeyer, S. K. Das, P. Kögerler, S. Sarkar, H. Bögge, M. Schmidtmann, and Sh. Sarkar (2000). Angew. Chem. Int. Ed. 39, 1612–1614.

    Article  Google Scholar 

  16. A. Müller, S. K. Das, E. Krickemeyer, P. Kögerler, H. Bögge, and M. Schmidtmann (2000). Solid State Sci. 2, 847–857.

    Article  Google Scholar 

  17. A. Müller (2009). Nat. Chem. 1, 13–14.

  18. P. Kögerler, B. Tuskerblat, and A. Müller (2010). Dalton Trans. 39, 21–36.

    Article  Google Scholar 

  19. D. Gatteschi, R. Sessoli, and J. Villain Molecular Nanomagnets (Oxford University Press, Oxford, 2006).

    Book  Google Scholar 

  20. I. Rousochatzakis, A. M. Läuchli, and F. Mila (2008). Phys. Rev. B 77, 094420.

    Article  Google Scholar 

  21. S. K. Pati and C. N. R. Rao (2008). Chem. Commun. 4683–4693.

  22. T. Liu, B. Imber, E. Diemann, G. Liu, K. Coklevski, H. Li, Z. Chen, and A. Müller (2006). J. Am. Chem. Soc. 128, 15914–15920.

    Article  CAS  Google Scholar 

  23. P. P. Mishra, J. Pigga, and T. Liu (2008). J. Am. Chem. Soc. 130, 1548–1549.

    Article  CAS  Google Scholar 

  24. A. M. Todea, A. Merca, H. Bögge, T. Glaser, J. M. Pigga, M. L. K. Langston, T. Liu, R. Prozorov, M. Luban, C. Schröder, W. H. Casey, and A. Müller (2010). Angew. Chem. Int. Ed. 49, 514–519.

    Article  CAS  Google Scholar 

  25. L. Engelhardt and C. Schröder in R. Winpenny (ed.), Molecular Cluster Magnets (World Scientific, Singapore, 2012), Chap. 6.

  26. A. Müller and P. Gouzerh (2012). Chem. Soc. Rev. 41, 7431–7463.

    Article  Google Scholar 

  27. K. Kuepper, C. Derks, C. Taubitz, M. Prinz, M. Joly, J.-P. Kappler, A. Postnikov, W. Yang, T. V. Kuznetsova, U. Wiedwald, P. Ziemann, and M. Neumann (2013). Dalton Trans. 42, 7924–7935.

    Article  CAS  Google Scholar 

  28. S. Roy, H. J. D. Meeldijk, A. V. Petukhov, M. Versluijs, and F. Soulimani (2008). Dalton Trans. 2861–2865.

    Article  Google Scholar 

  29. D. Fan and J. Hao (2009). J. Phys. Chem. B 113, 7513–7516.

    Article  CAS  Google Scholar 

  30. J. Cui, D. Fan, and J. Hao (2009). J. Colloid Interface Sci. 330, 488–492.

    Article  CAS  Google Scholar 

  31. D. Fan and J. Hao (2010). J. Colloid Interface Sci. 342, 43–48.

    Article  CAS  Google Scholar 

  32. A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann, and F. Peters (1998). Angew. Chem. Int. Ed. 37, 3360–3363.

    Google Scholar 

  33. J.-M. Lehn (2007). Chem. Soc. Rev. 36, 151–160.

    Article  CAS  Google Scholar 

  34. A. Müller, A. M. Todea, H. Bögge, J. van Slageren, M. Dressel, A. Stammler, and M. Rusu (2006). Chem. Commun. 3066–3068.

  35. M. Lundberg, M. Sundberg, and A. Magnéli (1982). J. Solid State Chem. 44, 32–40.

    Article  CAS  Google Scholar 

  36. T. Ushikubo, K. Oshima, A. Kayou, and M. Hatano (1997). Stud. Surf. Sci. Catal. 112, 473–482.

    Article  CAS  Google Scholar 

  37. M. Sadakane, K. Yamagata, K. Kodato, K. Endo, K. Toriumi, Y. Ozawa, T. Ozeki, T. Nagai, Y. Matsui, N. Sakaguchi, W. D. Pyrz, D. J. Buttrey, D. A. Blom, T. Vogt, and W. Ueda (2009). Angew. Chem. Int. Ed. 48, 3782–3786.

    Article  CAS  Google Scholar 

  38. B. Krebs and I. Paulat-Böschen (1982). Acta Crystallogr. Sect. B 38, 1710–1718.

    Article  Google Scholar 

  39. J. Gao, J. Yan, S. Beeg, D.-L. Long, and L. Cronin (2013). J. Am. Chem. Soc. 135, 1796–1805.

    Article  CAS  Google Scholar 

  40. C. Schäffer, A. M. Todea, P. Gouzerh, and A. Müller (2012). Chem. Commun. 48, 350–352.

    Article  Google Scholar 

  41. M. Sadakane, K. Endo, K. Kodato, S. Ishikawa, T. Murayama, and W. Ueda (2013). Eur. J. Inorg. Chem. 1731–1736.

  42. A. Müller, M. Luban, C. Schröder, R. Modler, P. Kögerler, M. Axenovich, J. Schnack, P. Canfield, S. Bud’ko. and N. Harrison (2001). ChemPhysChem. 2, 517–521.

    Google Scholar 

  43. A. Müller, S. K. Das, P. Kögerler, H. Bögge, M. Schmidtmann, A. X. Trautwein, V. Schünemann, E. Krickemeyer, and W. Preetz (2000). Angew. Chem. Int. Ed. 39, 3414–3417.

    Google Scholar 

  44. A. Müller, S. K. Das, H. Bögge, M. Schmidtmann, A. Botar, and A. Patrut (2001). Chem. Commun. 657–658.

  45. A. M. Todea, J. Szakacs, S. Konar, H. Bögge, D. C. Crans, T. Glaser, H. Rousselière, R. Thouvenot, P. Gouzerh, and A. Müller (2011). Chem. Eur. J. 17, 6635–6642.

    Article  CAS  Google Scholar 

  46. A. M. Todea, A. J. M. Al-Karawi, T. Glaser, S. Walleck, L.-M. Chamoreau, R. Thouvenot, P. Gouzerh, and A. Müller (2012). Inorg. Chim. Acta 389, 107–111.

    Article  CAS  Google Scholar 

  47. H. P. Klug and L. E. Alexander. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials (Wiley, New York, 2nd Edn, 1974), p. 849.

  48. R. Mekala, S. Supriya, and S. K. Das (2013). Inorg. Chem. 52, 9708–9710.

    Article  CAS  Google Scholar 

  49. A. A. Ostroushko, I. F. Gette, S Yu Medvedeva, I. G. Danilova, E. A. Mukhlynina, M. O. Tonkushina, and M. V. Morozova (2013). Nanotechnol Russia 8, 672–677.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. E. Diemann for valuable discussions and S. Garai for some help. A.M. acknowledges the Deutsche Forschungsgemeinschaft for continuous financial support and the European Research Council (Brussels) for an Advanced Grant. A.J.M.Al–K. acknowledges the DAAD and A.G. the Alexander von Humboldt Foundation for fellowships. P.G. acknowledges support from the Université Pierre et Marie Curie and the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierre Gouzerh or Achim Müller.

Additional information

Dedicated to Prof. Ronny Neumann on the occasion of his 60th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 534 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuepper, K., Neumann, M., Al-Karawi, A.J.M. et al. Immediate Formation/Precipitation of Icosahedrally Structured Iron–Molybdenum Mixed Oxides from Solutions Upon Mixing Simple Iron(III) and Molybdate Salts. J Clust Sci 25, 301–311 (2014). https://doi.org/10.1007/s10876-013-0668-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0668-y

Keywords

Navigation