Advertisement

Journal of Cluster Science

, Volume 25, Issue 2, pp 651–666 | Cite as

Surfactant-Free Hydrothermal Synthesis of Mesoporous Niobia Samples and Their Photoinduced Decomposition of Terephthalic Acid (TPA)

  • Farhadi Houshang
  • Hashemzadeh Fatemeh
  • Rahimi Rahmatollah
  • Gaffarinejad Ali
Original Paper

Abstract

This study introduces a low temperature surfactant-free hydrothermal method to synthesize mesoporous Nb2O5 photocatalysts using NbCl5 and H2O2 as precursors that are subsequently calcinated at 300, 400 and 450 °C and are assigned as mNb2O5-300, mNb2O5-400 and mNb2O5-450, respectively. Commercial niobia sample was used as reference sample for comparison purpose. All of materials were characterized by XRD, SEM, UV–Vis DRS, FTIR, TG/DTG and BET techniques. The synthesized Nb2O5 particles especially mNb2O5-300 sample shows a high surface area (240 m2/g), a large pore volume (0.21 cm3/g) and an identifying morphology of these features. Photocatalytic decomposition of terephthalic acid was evaluated using UV–Vis spectrophotometer. The photocatalytic reactions followed pseudo-first-order kinetics with an apparent rate constant of k = 105 × 10−3 min−1 for mNb2O5-300 sample with the highest activity among all samples at natural pH (pH = 6). Meanwhile, it was observed that optimum pH of 4 resulted in fast photocatalytic reaction for mNb2O5-300 sample.

Keywords

Oxides Mesoporous materials Chemical synthesis X-ray diffraction Catalytic properties 

References

  1. 1.
    C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck (1992). Nature 359, (6397), 710–712.CrossRefGoogle Scholar
  2. 2.
    A. Firouzi, D. Kumar, L. Bull, T. Besier, P. Sieger, Q. Huo, S. Walker, J. Zasadzinski, C. Glinka, and J. Nicol (1995). Science 267, (5201), 1138–1143.CrossRefGoogle Scholar
  3. 3.
    P. T. Tanev, M. Chibwe, and T. J. Pinnavaia (1994). Nature 368, (6469), 321–323.CrossRefGoogle Scholar
  4. 4.
    D. M. Antonelli and J. Y. Ying (1995). Angew. Chem. Int. Ed. 34, (18), 2014–2017.CrossRefGoogle Scholar
  5. 5.
    J. Y. Ying, C. P. Mehnert, and M. S. Wong (1999). Angew. Chem. Int. Ed. 38, (1–2), 56–77.CrossRefGoogle Scholar
  6. 6.
    Y. Yamauchi (2013). J. Ceram. Soc. Jpn. 121, (1417), 831–840.CrossRefGoogle Scholar
  7. 7.
    Y. Yamauchi, N. Suzuki, L. Radhakrishnan, and L. Wang (2009). Chem. Rec. 9, (6), 321–339.CrossRefGoogle Scholar
  8. 8.
    P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky (1998). Nature 396, (6707), 152–155.CrossRefGoogle Scholar
  9. 9.
    M. Schmitt, S. Heusing, M. A. Aegerter, A. Pawlicka, and C. Avellaneda (1998). Sol. Energy Mater. Sol. Cells 54, (1–4), 9–17.CrossRefGoogle Scholar
  10. 10.
    T. Hyodo, J. Ohoka, Y. Shimizu, and M. Egashira (2006). Sens. Actuators B Chem. 117, (2), 359–366.CrossRefGoogle Scholar
  11. 11.
    H. Szymanowski, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu (2005). J. Vac. Sci. Technol. A 23, (2), 241–247.CrossRefGoogle Scholar
  12. 12.
    S.-R. Yu, X.-P. Zhang, Z.-M. He, Y.-H. Liu, and Z.-H. Liu (2004). J. Mater. Sci. Mater. Med. 15, (6), 687–691.CrossRefGoogle Scholar
  13. 13.
    N. Kumagai, K. Tanno, T. Nakajima, and N. Watanabe (1983). Electrochim. Acta 28, (1), 17–22.CrossRefGoogle Scholar
  14. 14.
    S. Furukawa, T. Shishido, K. Teramura, and T. Tanaka (2011). J. Phys. Chem. C 115, (39), 19320–19327.CrossRefGoogle Scholar
  15. 15.
    S. Furukawa, Y. Ohno, T. Shishido, K. Teramura, and T. Tanaka (2011). ACS Catal. 1, (10), 1150–1153.CrossRefGoogle Scholar
  16. 16.
    D. M. Antonelli, A. Nakahira, and J. Y. Ying (1996). Inorg. Chem. 35, (11), 3126–3136.CrossRefGoogle Scholar
  17. 17.
    B. Lee, T. Yamashita, D. Lu, J. N. Kondo, and K. Domen (2002). Chem. Mater. 14, (2), 867–875.CrossRefGoogle Scholar
  18. 18.
    B. Ye, M. Trudeau, and D. Antonelli (2001). Adv. Mater. 13, (1), 29–33.CrossRefGoogle Scholar
  19. 19.
    Q. X. Dai, H. Y. Xiao, W. S. Li, Y. Q. Na, and X. P. Zhou (2005). Appl. Catal. A Gen. 290, (1), 25–35.CrossRefGoogle Scholar
  20. 20.
    H. Kominami, K. Oki, M. Kohno, S.-I. Onoue, Y. Kera, and B. Ohtani (2001). J. Mater. Chem. 11, (2), 604–609.CrossRefGoogle Scholar
  21. 21.
    D. M. Antonelli (1999). Microporous Mesoporous Mater. 33, (1–3), 209–214.CrossRefGoogle Scholar
  22. 22.
    N. Suzuki, T. Athar, Y.-T. Huang, K. Shimasaki, N. Miyamoto, and Y. Yamauchi (2011). J. Ceram. Soc. Jpn. 119, (1390), 405–411.CrossRefGoogle Scholar
  23. 23.
    N. Suzuki, M. Imura, Y. Nemoto, X. Jiang, and Y. Yamauchi (2011). CrystEngComm 13, (1), 40–43.CrossRefGoogle Scholar
  24. 24.
    N. Suzuki, T. Kimura, and Y. Yamauchi (2010). J. Mater. Chem. 20, (25), 5294–5300.CrossRefGoogle Scholar
  25. 25.
    B. Lee, D. Lu, J. N. Kondo, and K. Domen (2001). Chem. Commun. 20, 2118–2119.CrossRefGoogle Scholar
  26. 26.
    B. Lee, D. Lu, J. N. Kondo, and K. Domen (2002). J. Am. Chem. Soc. 124, (38), 11256–11257.CrossRefGoogle Scholar
  27. 27.
    B. N. Patil, D. B. Naik, and V. S. Shrivastava (2011). Desalination 269, (1), 276–283.CrossRefGoogle Scholar
  28. 28.
    C. A. Leon y Leon, J. M. Solar, V. Calemma, and L. R. Radovic (1992). Carbon 30, (5), 797–811.CrossRefGoogle Scholar
  29. 29.
    I. Nowak and M. Ziolek (1999). Chem. Rev. 99, (12), 3603–3624.CrossRefGoogle Scholar
  30. 30.
    J.-M. Jehng and I. E. Wachs (1990). Catal. Today 8, (1), 37–55.CrossRefGoogle Scholar
  31. 31.
    S. M. Maurer and E. I. Ko (1992). J. Catal. 135, (1), 125–134.CrossRefGoogle Scholar
  32. 32.
    C. Kormann, D. W. Bahnemann, and M. R. Hoffmann (1988). J. Phys. Chem. 92, (18), 5196–5201.CrossRefGoogle Scholar
  33. 33.
    Y. Sorek, R. Reisfeld, and A. M. Weiss (1995). Chem. Phys. Lett. 244, (5–6), 371–378.CrossRefGoogle Scholar
  34. 34.
    L. Brus (1986). J. Phys. Chem. 90, (12), 2555–2560.CrossRefGoogle Scholar
  35. 35.
    J. Lin, J. Lin, and Y. Zhu (2007). Inorg. Chem. 46, (20), 8372–8378.CrossRefGoogle Scholar
  36. 36.
    M. Anpo and M. Takeuchi (2003). J. Catal. 216, (1), 505–516.CrossRefGoogle Scholar
  37. 37.
    J.-H. Sun, Y.-K. Wang, R.-X. Sun, and S.-Y. Dong (2009). Mater. Chem. Phys. 115, (1), 303–308.CrossRefGoogle Scholar
  38. 38.
    G. Newcombe, R. Hayes, and M. Drikas (1993). Colloids Surf. A 78, 65–71.CrossRefGoogle Scholar
  39. 39.
    J. Rivera-Utrilla, I. Bautista-Toledo, and C. Moreno-Castilla (2001). J. Chem. Technol. Biotechnol. 76, (12), 1209–1215.CrossRefGoogle Scholar
  40. 40.
    A. G. S. Prado and L. L. Costa (2009). J. Hazard. Mater. 169, (1), 297–301.CrossRefGoogle Scholar
  41. 41.
    N. Daneshvar, S. Aber, M. S. S. Dorraji, A. R. Khataee, and M. H. Rasoulifard (2007). Sep. Purif. Technol. 58, (1), 91–98.CrossRefGoogle Scholar
  42. 42.
    W. Z. Tang, Z. Zhang, H. An, M. O. Quintana, and D. F. Torres (1997). Environ. Technol. 18, (1), 1–12.CrossRefGoogle Scholar
  43. 43.
    I. Peternel, N. Koprivanac, and I. Grcic (2011). Environ. Technol. 33, (1), 27–36.CrossRefGoogle Scholar
  44. 44.
    I. Poulios and I. Aetopoulou (1999). Environ. Technol. 20, (5), 479–487.CrossRefGoogle Scholar
  45. 45.
    J. M. Fanchiang and D. H. Tseng (2009). Environ. Technol. 30, (2), 161–172.CrossRefGoogle Scholar
  46. 46.
    Y. Abdollahi, A. H. Abdullah, U. I. Gaya, Z. Zainal, and N. A. Yusof (2011). Environ. Technol. 33, (10), 1183–1189.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Farhadi Houshang
    • 1
  • Hashemzadeh Fatemeh
    • 1
  • Rahimi Rahmatollah
    • 1
  • Gaffarinejad Ali
    • 1
  1. 1.Inorganic Nano-Materials Research Laboratory, Department of ChemistryIran University of Science and TechnologyTehranIran

Personalised recommendations