Journal of Cluster Science

, Volume 25, Issue 1, pp 173–188 | Cite as

Synthesis, Characterization and Properties of Single-Walled Carbon Nanohorns

  • K. Pramoda
  • Kota Moses
  • Mohd. Ikram
  • K. Vasu
  • A. Govindaraj
  • C. N. R. RaoEmail author
Original Paper


Single-walled nanohorns (SWNHs) have been prepared by sub-merged arc discharge of graphite electrodes in liquid nitrogen. The samples were examined by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. Nitrogen and boron doped SWNHs have been prepared by the sub-merged arc discharge method using melamine and elemental boron as precursors. Intensification of Raman D-band and stiffening of G-band has been observed in the doped samples. The electrical resistance of the SWNHs varies in opposite directions with nitrogen and boron doping. Functionalization of SWNHs through amidation has been carried out for solubilizing them in non-polar solvents. Water-soluble SWNHs have been produced by acid treatment and non-covalent functionalization with a coronene salt. SWNHs have been decorated with nanoparticles of Au, Ag and Pt. Interaction of electron donor (tetrathiafulvalene, TTF) and acceptor molecules (tetracyanoethylene, TCNE) with SWNHs has been investigated by Raman spectroscopy. Progressive softening and stiffening of Raman G-band has been observed respectively with increase in the concentration of TTF and TCNE.


Single-walled nanohorns Sub-merged arc discharge Dahlia-like nanohorns Charge-transfer Doped nanohorns 


  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162.CrossRefGoogle Scholar
  2. 2.
    S. Iijima (1991). Nature 354, 56.CrossRefGoogle Scholar
  3. 3.
    A. K. Geim, and K. S. Novoselov (2007). Nature 7, 183.CrossRefGoogle Scholar
  4. 4.
    C. N. R. Rao, and A. K. Sood, Graphene: Synthesis, Properties, and Phenomena (Wiley-VCH, Weinheim, 2013), pp. 1–47.Google Scholar
  5. 5.
    C. N. R. Rao, and A. Govindaraj, Nanotubes and Nanowires, 2nd edition (Royal Society of Chemistry, London, 2011).Google Scholar
  6. 6.
    S. Iiijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi (1999). Chem. Phys. Lett. 309, 165.CrossRefGoogle Scholar
  7. 7.
    D. Kasuya, M. Yudasaka, K. Takahashi, F. Kokai, and S. Iijima (2002). J. Phys. Chem. B 106, 4947.CrossRefGoogle Scholar
  8. 8.
    T. Ohba, K. Kaneko, M. Yudasaka, S. Iijima, A. Takase, and H. Kanoh (2012). J. Phys. Chem. C 116, 21870.CrossRefGoogle Scholar
  9. 9.
    T. Murakami, K. Ajima, J. Miyawaki, M. Yudasaka, S. Iijima, and K. Shiba (2004). Mol. Pharm. 1, 399.CrossRefGoogle Scholar
  10. 10.
    H. Wang, M. Chhowalla, N. Sano, S. Jia, and G. A. J. Amartunga (2004). Nanotechnology 15, 546.CrossRefGoogle Scholar
  11. 11.
    L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, and C. N. R. Rao (2009). Adv. Mater. 21, 4726.Google Scholar
  12. 12.
    P. Ayala, R. Arenal, M. Rummeli, A. Rubio, and T. Pichler (2010). Carbon. 48, 575.CrossRefGoogle Scholar
  13. 13.
    A. Stanishevsky (1998). Mater. Lett. 37, 162.CrossRefGoogle Scholar
  14. 14.
    X. Q. Meng, Z. H. Zang, H. X. Xuo, A. G. Li, and X. J. Fan (1998). Solid State Commun. 107, 75.CrossRefGoogle Scholar
  15. 15.
    J. Miyawaki, M. Yudasaka, T. Azami, Y. Kubo, and S. Iijima (2008). ACS nano 2, 213.CrossRefGoogle Scholar
  16. 16.
    Y. Zhang, N. W. Franklin, R. J. Chen, and H. Dai (2000). Chem. Phys. Lett. 331, 35.CrossRefGoogle Scholar
  17. 17.
    S. Fullam, D. Cottell, H. Rensmo, and D. Fitzmaurice (2000). Adv. Mater. 12, 1430.CrossRefGoogle Scholar
  18. 18.
    R. Yuge, T. Ichihashi, Y. Shimakawa, Y. Kubo, M. Yudasaka, and S. Iijima (2004). Adv. Mater. 16, 1420.CrossRefGoogle Scholar
  19. 19.
    K. S. Subrahmanyam, A. Ghosh, A. Gomathi, A. Govindaraj, and C. N. R. Rao (2009). Nanosci. Nanotechnol. Lett. 1, 28.CrossRefGoogle Scholar
  20. 20.
    A. Ghosh, K. V. Rao, S. J. George, and C. N. R. Rao (2010). Chem. Eur. J. 16, 2700.CrossRefGoogle Scholar
  21. 21.
    S. Utsumi, H. Honda, Y. Hattori, H. Kanoh, K. Takahashi, H. Sakai, M. Abe, M. Yudasaka, S. Iijima, and K. Kaneko (2007). J. Phys. Chem. C 111, 5572.CrossRefGoogle Scholar
  22. 22.
    C. Cioffi, S. Campidelli, F. G. Brunetti, M. Meneqhetti, and M. Prato (2006). Chem. Commun. 2129.Google Scholar
  23. 23.
    T. Nakajima, M. Koh, and T. Katsube (2000). Solid State Sci. 2, 17.CrossRefGoogle Scholar
  24. 24.
    Ishpal, O. S. Panwar, M. Kumar, and S. Kumar (2010). Appl. Surf. Sci. 256, 7371.CrossRefGoogle Scholar
  25. 25.
    K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima (2000). Chem. Phys. Lett. 331, 14.CrossRefGoogle Scholar
  26. 26.
    T. Amano and Y. Muramatsu (2012). J. Phys. Chem. C 116, 6793.CrossRefGoogle Scholar
  27. 27.
    R. Yuge, M. Yudasaka, J. Miyawaki, Y. Kubo, T. Ichihashi, H. Imai, E. Nakamura, H. Isobe, H. Yorimitsu, and S. Iijima (2005). J. Phys. Chem. B 109, 17861.CrossRefGoogle Scholar
  28. 28.
    K. Murata, A. Hashimoto, M. Yudasaka, D. Kasuya, K. Kaneko, and S. Iijima (2004). Adv. Mater. 16, 1520.CrossRefGoogle Scholar
  29. 29.
    K. Ajima, M. Yudasaka, T. Murakami, A. Maigne, K. Shiba, and S. Iijima (2005). Mol. Pharm. 2, 475.CrossRefGoogle Scholar
  30. 30.
    N. Rubio, M. A. Herrero, M. Meneghetti, A. Diaz-ortiz, M. Schiavon, M. Prato, and E. Vazquez (2009). J. Mater. Chem. 19, 4407.CrossRefGoogle Scholar
  31. 31.
    K. S. Subrahmanyam, S. R. C. Vivekchand, A. Govindaraj, and C. N. R. Rao (2008). J. Mater. Chem. 18, 1517.CrossRefGoogle Scholar
  32. 32.
    H. S. S. R. Matte, A. Jain, and S. J. George (2012). RSC Adv. 2, 6290.CrossRefGoogle Scholar
  33. 33.
    S. Alibert-Fouet, I. Seguy, J.-F. Bobo, P. Destruel, and H. Bock (2007). Chem. Eur. J. 13, 1746.CrossRefGoogle Scholar
  34. 34.
    U. Rohr, P. Schlichting, A. Bohm, M. Gross, K. Meerholz, C. Brauchle, and K. Mullen (1998). Angew. Chem. Int. Ed. 37, 1434.CrossRefGoogle Scholar
  35. 35.
    H. S. S. R. Matte, K. S. Subrahmanyam, K. V. Rao, S. J. George, and C. N. R. Rao (2011). Chem. Phys. Lett. 506, 260.CrossRefGoogle Scholar
  36. 36.
    H. S. S. R. Matte, K. S. Subrahmanyam, and C. N. R. Rao (2011). Nanomater. Nanotechnol. 1, 3.Google Scholar
  37. 37.
    X.-R. Ye, Y. Lin, C. Wang, M. H. Engelhard, Y. Wang, and C. M. Wai (2004). J. Mater. Chem. 14, 908.CrossRefGoogle Scholar
  38. 38.
    C. Xu, X. Wang, and J. Zhu (2008). J. Phys. Chem. C 112, 19841.CrossRefGoogle Scholar
  39. 39.
    N. Karousis, T. Ichihashi, M. Yudasaka, S. Iijima, and N. Tagmatarchis (2009). J. Nanosci. Nanotechnol. 9, 6047.CrossRefGoogle Scholar
  40. 40.
    Y. Liu, C. M. Brown, D. A. Neumann, D. B. Geohegan, A. A. Puretzky, C. M. Rouleau, H. Hu, D. Barnett, P. O. Krasnoy, and B. I. Yakobson (2012). Carbon. 50, 4953.CrossRefGoogle Scholar
  41. 41.
    R. Yuge, M. Yudasaka, A. Maigne, M. Tomonari, J. Miayawaki, Y. Kubo, H. Imai, T. Ichihashi, and S. Iijima (2007). J. Phys. Chem. C 112, 5416.CrossRefGoogle Scholar
  42. 42.
    M. Vizuete, M. J. G. Escalonilla, J. L. G. Fierro, M. Yudasaka, S. Iijima, M. Vartanian, J. Iehl, J.-F. Nierengarten, and F. Langa (2011). Chem. Commun. 47, 12771.CrossRefGoogle Scholar
  43. 43.
    C. Cioffi, S. Campidelli, C. Sooambar, M. Marcaccio, G. Marcolongo, M. Meneghetti, D. Paolucci, F. Paolucci, C. Ehli, G. M. A. Rahman, V. Sgobba, D. M. Guldi, and M. Prato (2007). J. Am. Chem. Soc. 129, 3938.CrossRefGoogle Scholar
  44. 44.
    R. Voggu, C. S. Rout, A. D. Franklin, T. S. Fisher, and C. N. R. Rao (2008). J. Phys. Chem. C 112, 13053.CrossRefGoogle Scholar
  45. 45.
    B. Das, R. Voggu, C. S. Rout and C. N. R. Rao (2008). Chem. Commun. 5155.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • K. Pramoda
    • 1
  • Kota Moses
    • 2
  • Mohd. Ikram
    • 1
  • K. Vasu
    • 1
  • A. Govindaraj
    • 1
    • 3
  • C. N. R. Rao
    • 1
    • 2
    • 3
    Email author
  1. 1.New Chemistry Unit, Chemistry and Physics of Materials Unit, CSIR Center of Excellence in Chemistry and International Centre for Materials ScienceJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  2. 2.Materials Research CenterIndian Institute of ScienceBangaloreIndia
  3. 3.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations