Skip to main content
Log in

Hydride Dynamics in Triosmium and Triruthenium Carbonyl Clusters: Synthesis, Reactivity and Dynamics of a Trihydrido Quinoline-4-Carboxaldehyde Triosmium Cluster

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

An overview of the dynamical processes involving the hydrido ligand in triosmium and triruthenium carbonyl clusters is presented. The relationship between the mechanisms of hydride motions and the other ligands in the cluster are discussed for mono- di- and trihydrido-clusters. In addition, the reactivity of the electron deficient 46e cluster, (μ-H)(μ32-C9H5N-4-CHO)Os3(CO)9 (1) with hydrogen is reported. The reaction gives two isomeric trihydrido clusters, H(μ-H)232-C9H5N-4-CHO)Os3(CO)8 (2) and (μ-H)332-C9H5N-4-CHO)Os3(CO)8 (2′) in low yield along with trace amounts of other hydrido clusters. Reaction of the inseparable mixture of 2 and 2′ with triphenylphosphine at ambient temperatures gives two related addition products H(μ-H)2(μ-η2-C9H5N-4-CHO)Os3(CO)8PPh3 (3) and (μ-H)3(μ-η2-C9H5N-4-CHO)Os3(CO)8PPh3 (3′) in a 5:1 ratio. These results contrast with the previously reported trihydrido-derivatives of triosmium μ32-imidoyl clusters where only analogues of 2 and 3 are obtained. Clusters 2 and 2′ are rigid on the NMR time scale while 3 exhibits dynamical behavior in the temperature range of −50 to +25 °C. Cluster 3′ is stereochemically rigid in this temperature range. The dynamical behavior of 3 involves the exchange of the terminal and bridging hydrides coupled with tripodal motion of the phosphine substituted osmium atom, a process virtually identical to previously reported trihydrides of the μ32-imidoyl triosmium clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Fig. 2
Scheme 5
Fig. 3

Similar content being viewed by others

References

  1. B. F. G. Johnson Transition Metal Clusters (Wiley, New York, 1980), p. 509.

    Google Scholar 

  2. E. Band and E. L. Muetterties (1978). Chem. Rev. 78, 639.

    Article  CAS  Google Scholar 

  3. P. R. Raithby and M. Rosales (1985). Adv. Inorg. Chem. Radiochem. 29, 170.

    Google Scholar 

  4. E. Rosenberg (1989). Polyhedron 8, 383.

    Article  CAS  Google Scholar 

  5. M. R. Albert and J. T. Yates A Surface Scientist’s Guide to Organometallic Chemistry (ACS, Washington, DC, 1987).

    Google Scholar 

  6. S. Aime, O. Gambino, L. Milone, E. Sappa, and E. Rosenberg (1975). Inorg. Chim. Acta 15, 53.

    Article  CAS  Google Scholar 

  7. L. J. Farrugia and S. E. Rae (1992). Organometallics 11, 196.

    Article  CAS  Google Scholar 

  8. A. J. Arce, R. Machado, Y. De Santis, M. V. Capparelli, R. Atencio, J. Manzur, and A. J. Deeming (1997). Organomettallics 16, 1733.

    Article  Google Scholar 

  9. S. T. Beatty, B. Bergman, E. Rosenberg, W. Dastru, R. Gobetto, L. Milone, and A. Viale (1999). J. Organomet. Chem. 593–594, 226.

    Google Scholar 

  10. E. Rosenberg, W. Freeman, Z. Carlos, K. H. Hardcastle, Y. J. Yoo, L. Milone, and R. Gobetto (1992). J. Cluster Sci. 3, 439.

    Article  CAS  Google Scholar 

  11. H. Jungbluth, G. Süss-fink, M. A. Pellingghelli, and A. Tiripicchio (1990). Organometallics 9, 1670.

    Article  CAS  Google Scholar 

  12. S. Aime, D. Osella, L. Milone, and E. Rosenberg (1981). J. Organomet. Chem. 213, 207.

    Article  CAS  Google Scholar 

  13. J. R. Shapley, J. B. Keister, M. R. Churchill, and B. G. DeBoer (1975). J. Am. Chem. Soc. 97, 4145.

    Article  CAS  Google Scholar 

  14. J. B. Keister and J. R. Shapley (1982). Inorg. Chem. 21, 3304.

    Article  CAS  Google Scholar 

  15. L. R. Nevinger, J. B. Kiester, and J. Kiester (1990). Organometallics 9, 1900.

    Article  CAS  Google Scholar 

  16. S. E. Kabir, D. S. Kolwaite, E. Rosenberg, L. G. Scott, T. McPhillips, R. Duque, M. Day, and K. I. Hardcastle (1996). Organometallics 15, 1979.

    Article  CAS  Google Scholar 

  17. K. A. Aazam, S. E. Kabir, M. W. Day, K. I. Hardcastle, and E. Rosenberg (1992). J. Organomet. Chem. 435, 157.

    Article  Google Scholar 

  18. R. Gobetto, K. I. Hardcastle, S. E. Kabir, L. Milone, N. Nishimora, M. Botta, E. Rosenberg, and M. Yin (1995). Organometallics 14, 3068.

    Article  CAS  Google Scholar 

  19. A. J. Deeming, C. S. Forth, Md. I. Hyder, S. E. Kabir, E. Nordlander, F. Rodgers, and B. Ullmann (2005). Eur. J. Inorg. Chem. 2005, 4352.

    Article  Google Scholar 

  20. A. J. Deeming, S. E. Kabir, D. Nuel, and N. I. Powell (1989). Organometallics 8, 717.

    Article  CAS  Google Scholar 

  21. J. Evans and G. S. McNulty (1981). J. Chem. Soc. Dalton 1981, 2017.

    Article  Google Scholar 

  22. S. Aime, R. Bertoncello, V. Busetti, G. Granozzi, and D. Osella (1986). Inorg. Chem. 25, 4004.

    Article  CAS  Google Scholar 

  23. T. Takao, T. Takemori, M. Moriya, and H. Suzuki (2002). Organometallics 21, 5190.

    Article  CAS  Google Scholar 

  24. V. D. Reddy, D. Dayal, S. C. Cosenza, M. V. Ramana-Reddy, W. C. Pearl Jr, and R. D. Adams (2009). J. Organomet. Chem. 694, 959.

    Article  CAS  Google Scholar 

  25. Md. I. Hyder, N. Begum, Md. D. H. Sidker, G. M. Golzar Hossain, G. Hogarth, S. E. Kabir, and C. J. Richard (2009). J. Organomet. Chem. 694, 304.

    Article  CAS  Google Scholar 

  26. Z. A. Rahman, L. R. Beanan, L. M. Bavaro, S. P. Modi, J. B. Keister, and M. R. Churchill (1984). J. Organomet. Chem. 263, 75.

    Article  CAS  Google Scholar 

  27. S. M. T. Abedin, K. I. Hardcastle, S. E. Kabir, K. M. A. Malik, E. Rosenberg, M. A. Motaleib, and Md. J. Abedin (2000). Organomettalics 19, 5623.

    Article  CAS  Google Scholar 

  28. E. Rosenberg, S. E. Kabir, M. Day, and K. I. Hardcastle (1994). Organometallics 13, 4437.

    Article  Google Scholar 

  29. E. Rosenberg, S. E. Kabir, D. Kolwaite, K. I. Hardcastle, W. Crosswell, and J. Grindstaff (1995). Organometallics 14, 3611.

    Article  Google Scholar 

  30. E. Rosenberg, M. Botavina, D. Rokshsana, C. Nervi, R. Gobetto, L. Milone, A. Viale, and J. Fiedler (2004). Organometallics 23, 215.

    Article  CAS  Google Scholar 

  31. R. Smith, E. Rosenberg, K. I. Hardcastle, V. Vazquez, and J. Roh (1999). Organometallics 18, 3519.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the National Science Foundation (Grant No. CHE-1049567) for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Rosenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberg, E., Kumar, R. Hydride Dynamics in Triosmium and Triruthenium Carbonyl Clusters: Synthesis, Reactivity and Dynamics of a Trihydrido Quinoline-4-Carboxaldehyde Triosmium Cluster. J Clust Sci 25, 239–252 (2014). https://doi.org/10.1007/s10876-013-0635-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0635-7

Keywords

Navigation