Journal of Cluster Science

, Volume 25, Issue 1, pp 253–259 | Cite as

Crown Inorganic–Organic Hybrid Composed of Copper-Amino Acid Rings and the Classical Keggin Polyoxoanions

Original Paper


A new crown inorganic–organic hybrid material composed of the Keggin polyoxometalates and transition metal-amino acid coordination complexes, K2{[KCu4(gly)4(OH)2(H2O)2Cl][PW12O40]}2·19H2O (1), was synthesized and characterized by elemental analysis, IR spectroscopy, TG analysis and single crystal X-ray diffraction. Compound 1 possesses of a 1D chain structure with a crown-type monomer, which is built up from [PW12O40]3− building blocks and tetranuclear [KCu4(gly)4(OH)2(H2O)2Cl] rings. The [KCu4(gly)4(OH)2(H2O)2Cl] ring consists of four Cu2+ ions and four gly ligands, which exhibits the crown ether feature binding a potassium ion in its center. Further, two [KCu4(gly)4(OH)2(H2O)2Cl] rings linked two Keggin polyoxoanions [PW12O40]3− into crown inorganic–organic hybrid material. Magnetic study shows the existence of ferromagnetic interactions in compound 1.


Inorganic-organic hybrid Amino acids Polyoxometalate Copper 



This work was supported by the National Natural Science Foundation of China (21101022).

Supplementary material

10876_2013_634_MOESM1_ESM.doc (1.5 mb)
Supplementary material 1 (DOC 1542 kb)


  1. 1.
    M. T. Pope Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).CrossRefGoogle Scholar
  2. 2.
    S. G. Mitchell, C. Streb, H. N. Miras, T. Boyd, D. L. Long, and L. Cronin (2010). Nat. Chem. 2, 308.CrossRefGoogle Scholar
  3. 3.
    A. Müller and P. Gouzerh (2012). Chem. Soc. Rev. 41, 7431.CrossRefGoogle Scholar
  4. 4.
    C. L. Hill and C. M. Prosser-McCartha (1995). Coord. Chem. Rev. 143, 407.CrossRefGoogle Scholar
  5. 5.
    S.-T. Zheng and G.-Y. Yang (2012). Chem. Soc. Rev. 2012, (41), 7623.CrossRefGoogle Scholar
  6. 6.
    T. Hirano, K. Uehara, K. Kamata, and N. Mizuno (2012). J. Am. Chem. Soc. 134, 6425.CrossRefGoogle Scholar
  7. 7.
    A. Banerjee, B. S. Bassil, Gerd-Volker Röschenthaler, and U. Kortz (2013). Chem. Commun. 49, 5189.CrossRefGoogle Scholar
  8. 8.
    Z.-M. Zhang, S. Yao, Y.-G. Li, H–. H. Wu, Y.-H. Wang, M. Rouzières, R. Clérac, Z.-M. Su, and E.-B. Wang (2013). Chem. Commun. 49, 2515.CrossRefGoogle Scholar
  9. 9.
    Z. Zhang, Y. Li, E. Wang, X. Wang, C. Qin, and H. An (2006). Inorg. Chem. 45, 4313.CrossRefGoogle Scholar
  10. 10.
    C. Zou, Z. J. Zhang, X. Xu, Q. H. Gong, J. Li, and C. D. Wu (2012). J. Am. Chem. Soc. 134, 87.CrossRefGoogle Scholar
  11. 11.
    Z. M. Zhang, J. Liu, E. Wang, C. Qin, Y. Li, Y. Qi and X. Wang (2008). Dalton Trans. 463.Google Scholar
  12. 12.
    D. B. Dang, B. An, Y. Bai, G. S. Zheng, and J. Y. Niu (2013). Chem. Commun. 49, 2243.CrossRefGoogle Scholar
  13. 13.
    S. Yao, H. L. Wu, Z.-Q. Lei, J.-H. Yan, and E.-B. Wang (2013). Chin. Chem. Lett. 24, 283.CrossRefGoogle Scholar
  14. 14.
    J. Zhao, D. Shi, L. Chen, P. Ma, J. Wang, and J. Niu (2011). CrystEngComm 13, 3462.CrossRefGoogle Scholar
  15. 15.
    Y.-F. Song, D.-L. Long, C. Ritchie, and L. Cronin (2011). Chem. Rec. 11, 158.CrossRefGoogle Scholar
  16. 16.
    A. Dolbecq, E. Dumas, C. R. Mayer, and P. Mialane (2010). Chem. Rev. 110, 6009.CrossRefGoogle Scholar
  17. 17.
    J–. J. Zhang, T.-L. Sheng, S.-Q. Xia, G. Leibeling, F. Meyer, S.-M. Hu, R.-B. Fu, S.-C. Xiang, and X.-T. Wu (2004). Inorg. Chem. 43, 5472.CrossRefGoogle Scholar
  18. 18.
    B. Q. Ma, D. S. Zhang, S. Gao, T. Z. Jin, C. H. Yan, and G. X. Xu (2000). Angew. Chem. Int. Ed. 39, 3644.CrossRefGoogle Scholar
  19. 19.
    A. Sanyal, S. Mandal, and M. Sastry (2005). Adv. Funct. Mater. 15, 273.CrossRefGoogle Scholar
  20. 20.
    Z. Chen, H. An, H. Zhang, and Y. Hu (2013). CrystEngComm 15, 4711.CrossRefGoogle Scholar
  21. 21.
    M. Sadakane, M. H. Dickman, and M. T. Pope (2001). Inorg. Chem. 40, 2715.CrossRefGoogle Scholar
  22. 22.
    D. C. Crans, M. Mahroof-Tahir, O. P. Anderson, and M. M. Miller (1994). Inorg. Chem. 33, 5586.CrossRefGoogle Scholar
  23. 23.
    P. Wu, J. Zhang, X. Xu, J. Hao, Z. Xiao, C. Lv, and F. Xiao (2010). J. Clust. Sci. 21, 173.CrossRefGoogle Scholar
  24. 24.
    M. Cindrić, N. Strukan, M. Devčić, and B. Kamenar (1999). Inorg. Chem. Commun. 2, 558.CrossRefGoogle Scholar
  25. 25.
    J. Li, Y. Qi, J. Li, H. Wang, X. Wu, L. Duan, and E. Wang (2004). J. Coord. Chem. 57, 1309.CrossRefGoogle Scholar
  26. 26.
    U. Kortz, M. G. Savelieff, F. Y. A. Ghali, L. M. Khalil, S. A. Maalouf, and D. I. Sinno (2002). Angew. Chem. Int. Ed. 41, 4070.CrossRefGoogle Scholar
  27. 27.
    Y. Xu, K. Yu, B. Zhou, Z. Su, and J. Wu (2013). J. Coord. Chem. 66, 1303.CrossRefGoogle Scholar
  28. 28.
    H.-Y. An, E.-B. Wang, D.-R. Xiao, Y.-G. Li, Z.-M. Su, and L. Xu (2006). Angew. Chem. Int. Ed. 45, 904.CrossRefGoogle Scholar
  29. 29.
    H. An, E. Wang, Y. Li, Z. Zhang, and L. Xu (2007). Inorg. Chem. Commun. 10, 299.CrossRefGoogle Scholar
  30. 30.
    C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, and R. Thouvenot (1983). Inorg. Chem. 22, 207.CrossRefGoogle Scholar
  31. 31.
    G. M. Sheldrick, SHELXL97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997; G. M. Sheldrick, SHELXS97, Program for Crystal Structure Solution, University of Göttingen, Göttingen, Germany, 1997.Google Scholar
  32. 32.
    T. Rajkumar and G. Ranga Rao (2008). Mater. Lett. 62, 4143.CrossRefGoogle Scholar
  33. 33.
    S. M. Barlow, K. J. Kitching, S. Haq, and N. V. Richardson (1998). Surf. Sci. 401, 322.CrossRefGoogle Scholar
  34. 34.
    S. K. Dey, B. Bag, K. M. A. Malik, M. S. El Fallah, J. Ribas, and S. Mitra (2003). Inorg. Chem. 42, 4029.CrossRefGoogle Scholar
  35. 35.
    X. Y. Jiang, X. Y. Wu, R. M. Yu, D. Q. Yuan, and W. Z. Chen (2011). Inorg. Chem. Commun. 14, 1546.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of ChemistryKey Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations