Journal of Cluster Science

, Volume 25, Issue 2, pp 495–503 | Cite as

Synthesis and Crystal Structures of Diiron Dithiolate Complexes Containing Diphosphine Ligands

Original Paper


As the active site model of [FeFe]-hydrogenases, complexes [(μ-PDT)Fe2(CO)5]2(dppb) (PDT = SCH2CH2CH2S, dppb = Ph2PCH2CH2CH2CH2PPh2) (1) and [(μ-SCH2)2NCH2CO2Me]Fe2(CO)5(dppm) (dppm = Ph2PCH2PPh2) (2) were prepared by reactions of (μ-PDT)Fe2(CO)6 (A) or [(μ-SCH2)2NCH2CO2Me]Fe2(CO)6 (B) with dppb or dppm in the presence of the decarbonylating agent Me3NO∙2H2O in MeCN at room temperature. Complex 1 was characterized by elemental analysis, IR, and 1H (31P, 13C) NMR spectroscopic techniques. In addition, the molecular structures of 1 and 2 have been confirmed by single crystal X-ray diffraction analysis. In the crystal structure of 1, two phosphorus atoms of dppb reside in a basal position of the square-pyramidal coordination sphere of the Fe2 and Fe3 atoms. However, in the crystal structure of 2, P1 atom of dppm resides in an apical position of the square-pyramidal coordination sphere of the Fe2 atom.


Diiron dithiolate Diphosphine ligand Carbonyl substitution Synthesis Crystal structure 



This work was supported by National Training Programs of Innovation and Entrepreneurship for Undergraduates (201311058010) and Ningbo Science and Technology Innovation Team (2011B82002).


  1. 1.
    R. Cammack (1999). Nature 397, 214.CrossRefGoogle Scholar
  2. 2.
    C. Tard and C. J. Pickett (2009). Chem. Rev. 109, 2245.CrossRefGoogle Scholar
  3. 3.
    F. Gloaguen and T. B. Rauchfuss (2009). Chem. Soc. Rev. 38, 100.CrossRefGoogle Scholar
  4. 4.
    J. W. Peters, W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt (1998). Science 282, 1853.CrossRefGoogle Scholar
  5. 5.
    Y. Nicolet, C. Piras, P. Legrand, C. E. Hatchikian, and J. C. Fontecilla-Camps (1999). Structure 7, 13.CrossRefGoogle Scholar
  6. 6.
    A. L. De Lacey, C. Stadler, C. Cavazza, E. C. Hatchikian, and V. M. Fernandez (2000). J. Am. Chem. Soc. 122, 11232.CrossRefGoogle Scholar
  7. 7.
    M. Schmidt, S. M. Contakes, and T. B. Rauchfuss (1999). J. Am. Chem. Soc. 121, 9736.CrossRefGoogle Scholar
  8. 8.
    J. D. Lawrence, H. Li, and T. B. Rauchfuss (2001). Chem. Commun. 1482.Google Scholar
  9. 9.
    F. Wang, W. G. Wang, X. J. Wang, H. Y. Wang, C. H. Tung, and L. Z. Wu (2011). Angew. Chem. Int. Ed. 50, 3193.CrossRefGoogle Scholar
  10. 10.
    S. Ghosh, G. Hogarth, N. Hollingsworth, K. B. Holt, I. Richards, M. G. Richmond, B. E. Sancheza, and D. Unwin (2013). Dalton Trans. 42, 6775.CrossRefGoogle Scholar
  11. 11.
    S. Gao, J. Fan, S. Sun, F. Song, X. Peng, Q. Duan, D. Jiang, and Q. Liang (2012). Dalton Trans. 41, 12064.CrossRefGoogle Scholar
  12. 12.
    M. El-khateeb, M. Harb, Q. Abu-Salem, H. Görls, and W. Weigand (2013). Polyhedron 61, 1.CrossRefGoogle Scholar
  13. 13.
    X. F. Liu and X. W. Xiao (2011). J. Organomet. Chem. 696, 2767.CrossRefGoogle Scholar
  14. 14.
    X. F. Liu, Z. Q. Jiang, and Z. J. Jia (2012). Polyhedron 33, 166.CrossRefGoogle Scholar
  15. 15.
    X. F. Liu (2011). Inorg. Chim. Acta 378, 338.CrossRefGoogle Scholar
  16. 16.
    X. F. Liu and H. Q. Gao (2013). J. Clust. Sci. doi: 10.1007/s10876-013-0615-y.Google Scholar
  17. 17.
    E. J. Lyon, I. P. Georgakaki, J. H. Reibenspies, and M. Y. Darensbourg (1999). Angew. Chem. Int. Ed. 38, 3178.CrossRefGoogle Scholar
  18. 18.
    X. F. Liu, X. W. Xiao, and L. J. Shen (2011). J. Coord. Chem. 64, 1023.CrossRefGoogle Scholar
  19. 19.
    CRYSTALCLEAR 1.3.6. Rigaku and Rigaku/MSC. The Woodlands, TX, 2005.Google Scholar
  20. 20.
    G. M. Sheldrick SHELXS97, A program for crystal structure solution (University of Göttingen, Germany, 1997).Google Scholar
  21. 21.
    G. M. Sheldrick SHELXL97, A program for crystal structure refinement (University of Göttingen, Germany, 1997).Google Scholar
  22. 22.
    F. I. Adam, G. Hogarth, S. E. Kabir, and I. Richards (2008). C. R. Chimie 11, 890.CrossRefGoogle Scholar
  23. 23.
    W. Gao, J. Ekström, J. Liu, C. Chen, L. Eriksson, L. Weng, B. Åkermark, and L. Sun (2007). Inorg. Chem. 46, 1981.CrossRefGoogle Scholar
  24. 24.
    N. Wang, M. Wang, J. Liu, K. Jin, L. Chen, and L. Sun (2009). Inorg. Chem. 48, 11551.CrossRefGoogle Scholar
  25. 25.
    X. F. Liu and B. S. Yin (2010). J. Coord. Chem. 63, 4061.CrossRefGoogle Scholar
  26. 26.
    B. S. Yin, T. B. Li, and M. S. Yang (2011). J. Coord. Chem. 64, 2066.CrossRefGoogle Scholar
  27. 27.
    P. H. Zhao, Y. Q. Liu, and G. Z. Zhao (2013). Polyhedron 53, 144.CrossRefGoogle Scholar
  28. 28.
    C. A. Mebi, D. S. Karr, and B. C. Noll (2013). Polyhedron 50, 164.CrossRefGoogle Scholar
  29. 29.
    X. F. Liu, X. W. Xiao, L. J. Shen, J. H. Fang, J. R. Wang, H. Q. Gao, and X. H. Liu (2011). Chin. J. Struct. Chem. 30, 1016.Google Scholar
  30. 30.
    X. F. Liu, X. W. Xiao, and X. H. Liu (2011). Chin. J. Struct. Chem. 30, 1437.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNingbo University of TechnologyNingboChina

Personalised recommendations