Journal of Cluster Science

, Volume 25, Issue 2, pp 483–493 | Cite as

Nanosized TiO2 as a Recyclable Heterogeneous Catalyst for the Synthesis of Tetrahydrobenzo[b]pyran Derivatives

  • Priyanka L. Anandgaonker
  • Sunita Jadhav
  • Suresh T. Gaikwad
  • Anjali S. Rajbhoj
Original Paper


An electrochemical reduction method was used for the preparation of TiO2 nanoparticles in which agglomeration with formation of undesired metal powders is prevented by the presence of ammonium stabilizers. These synthesized nanoparticles were characterized by UV–Visible, XRD, SEM–EDS and TEM analysis techniques. These synthesized nanoparticles of TiO2 were tested as heterogeneous catalyst for the synthesis of tetrahydrobenzo[b]pyran derivative using three components reaction of aromatic aldehyde, dimedione and malononitrile by simply stirring at room temperature in a solvent free condition.


Electrochemical reduction method TiO2 nanoparticle Three component reaction Tetrahydrobenzo[b]pyran 



The authors are grateful to the Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad and UGC-SAP-DRS-1 scheme New Delhi for providing the laboratory facility. One of the author (ASR) is thankful for financial assistance from UGC Major Research Project, New Delhi.


  1. 1.
    H. M. Marvaniya, K. N. Modi, and D. J. Sen (2011). Int. J. Drug Dev. Res. 3, (2), 34.Google Scholar
  2. 2.
    D. Astruc (2007). Inorg. Chem. 46, 1884.CrossRefGoogle Scholar
  3. 3.
    L.-S. Zhong, J.-S. Hu, Z.-M. Cui, L.-J. Wan, and W.-G. Song (2007). Chem. Mater. 19, 4557.CrossRefGoogle Scholar
  4. 4.
    J. F. Alonso and M. Yus (2008). Pure Appl. Chem. 80, (5), 1005.CrossRefGoogle Scholar
  5. 5.
    D. Astruc (2008). Nanopart. Catal. 1.Google Scholar
  6. 6.
    L. Djakovitch, K. Koehler, and J. G. de Vries (2008). Nanopart. Catal. 303.Google Scholar
  7. 7.
    J. Durand, E. Teuma, and M. Gomez (2008). Eur. J. Inorg. Chem. 3577.Google Scholar
  8. 8.
    A. Roucoux, J. Schulz, and H. Patin (2002). Chem. Rev. 102, 3757.CrossRefGoogle Scholar
  9. 9.
    D. Herna′ndez-Santos, M. B. Gonza′lez-Garcı′a, and A. C. Garcia (2002). Metal-nanoparticles based electroanalysis. Electroanalysis 14, 1225.CrossRefGoogle Scholar
  10. 10.
    H. H. Kung, Surface Chemistry and Catalysis (Amsterdam, Elsevier, 1989), p. 45.Google Scholar
  11. 11.
    V. E. Henrich, and P. A. Cox, The surface science of metal oxides (Cambridge University Press, Cambridge, 1994), p. 464.Google Scholar
  12. 12.
    C. Noguera, Physics and chemistry at oxide surface (Cambridge University Press, Cambridge, 1996).Google Scholar
  13. 13.
    M. B. Gawande, R. K. Pandey, and R. V. Jayaram (2012). Catal. Sci. Technol. 2, 1113.CrossRefGoogle Scholar
  14. 14.
    M. L. Kantam, S. Laha, J. Yadav, et al. (2006). Tetrahedron Lett. 47, 6213.CrossRefGoogle Scholar
  15. 15.
    M. H. Sarvari (2007). Acta Chim. Slov. 54, 354.Google Scholar
  16. 16.
    J. L. Ropero-Vega, A. Aldana-Pe′reza, R. Go′mez, et al. (2010). Appl. Catal. A 379, 24.CrossRefGoogle Scholar
  17. 17.
    M. Z. Kassaee, R. Mohammadi, H. Masrouri, et al. (2011). Chin. Chem. Lett. 22, 1203.Google Scholar
  18. 18.
    F. Shirini, M. A. Khoshdel, M. Abedini, et al. (2011). Chin. Chem. Lett. 22, 1211.Google Scholar
  19. 19.
    F. Shirini, S. V. Atghia, and M. AlipourKhoshdel (2011). Iran J. Catal. 1, 93.Google Scholar
  20. 20.
    S. M. Sajadi, M. Naderi, and S. Babadoust (2011). Nat. Sci. Res. 1, 10.Google Scholar
  21. 21.
    S. Abdolmohammadiccin (2012). Chin. Chem. Lett. 23, 1003.CrossRefGoogle Scholar
  22. 22.
    W. O. Foye (1991). Prinicipi di Chimica Farmaceutica Piccin, Padova, Italy, 416.Google Scholar
  23. 23.
    L. Weber (2002). Curr. Med. Chem. 9, 1241.CrossRefGoogle Scholar
  24. 24.
    G. Pandey, R. P. Singh, A. Gary, and V. K. Singh (2005). Tetrahedron Lett. 46, 2137.CrossRefGoogle Scholar
  25. 25.
    L. L. Andreani and E. Lapi (1960). Boll. Chim. Farm. 99, 583.Google Scholar
  26. 26.
    L. Bonsignore, G. Loy, D. Secci, and A. Calignano (1993). Eur. J. Med. Chem. 28, 517.CrossRefGoogle Scholar
  27. 27.
    I. Devi and P. J. Bhuyan (2004). Tetrahedron Lett. 45, 8625.CrossRefGoogle Scholar
  28. 28.
    S. Hatakeyama, N. Ochi, H. Numata, and S. Takano (1988). J. Chem. Soc. Chem. Commun. 1202.Google Scholar
  29. 29.
    C. S. Konkoy, D. B. Fick, X. Cai, S. X. Lan, N. C. Keana, J. F. W. PCT Appl. WO 0075123 (2000) Chem. Abstr. 2001, 134, 29313a.Google Scholar
  30. 30.
    S. J. Tu, H. Jiang, Q. Y. Zhuang, C. B. Miu, D. Q. Shi, X. S. Wang, and Y. Gao (2003). Chin. J. Org. Chem. 23, (5), 488.Google Scholar
  31. 31.
    T. S. Jin, A. Q. Wang, F. Shi, L. S. Han, L. B. Liu, and T. S. Li (2006). ARKIVOC xiv, 78.CrossRefGoogle Scholar
  32. 32.
    S. Kamaljit, S. Jasbir, and S. Harjit (1996). Tetrahedron 52, 14273.CrossRefGoogle Scholar
  33. 33.
    S. J. Tu, Y. Gao, C. Guo, D. Shi, and Z. Lu (2002). Synth. Commun. 32, 2137.CrossRefGoogle Scholar
  34. 34.
    S. J. Tu, H. Jiang, Q. Y. Zhuang, C. B. Miu, D. Q. Shi, X. S. Wang, and Y. Gao (2003). Chin. J. Org. Chem. 23, 488.Google Scholar
  35. 35.
    S. Abdolmohammadi and S. Balalaie (2007). Tetrahedron Lett. 48, 3299.CrossRefGoogle Scholar
  36. 36.
    M. Saha and A. Kumar Pal (2012). Adv. Nanopart. 1, 61.CrossRefGoogle Scholar
  37. 37.
    L. Fotouhi, M. M. Heravi, A. Fatahi, and K. Bakhtiari (2007). Tetrahedron Lett. 48, 5379.CrossRefGoogle Scholar
  38. 38.
    L. X. Zian, Y. Huang, Y. Q. Li, and W. J. Zheng (2008). Monatsh. Chem. 139, 129.CrossRefGoogle Scholar
  39. 39.
    R. S. Bhosale, C. V. Magar, K. S. Solanke, S. B. Mane, S. S. Choudhary, and R. P. Pawar (2007). Synth. Commun. 37, 4353.CrossRefGoogle Scholar
  40. 40.
    M. Seifi and H. Sheibani (2008). Catal. Lett. 126, 275.CrossRefGoogle Scholar
  41. 41.
    Jia Zheng and Yi-Qun Li (2011). Arch. Appl. Sci. Res. 3, (2), 381.Google Scholar
  42. 42.
    R. Hekmatshoar, S. Majedi, and K. Bakhtiari (2008). Catal. Commun. 9, 307.CrossRefGoogle Scholar
  43. 43.
    D. Fang, H. B. Zhang, and Z. L. Liu (2010). J. Heterocycl. Chem. 47, 63.Google Scholar
  44. 44.
    M. T. Reetz and W. Helbig (1994). J. Am. Chem. Soc. 116, 740.Google Scholar
  45. 45.
    S. Rathod, B. Arbad, and M. Lande (2010). Chin. J. Catal. 31, 631.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Priyanka L. Anandgaonker
    • 1
  • Sunita Jadhav
    • 1
  • Suresh T. Gaikwad
    • 1
  • Anjali S. Rajbhoj
    • 1
  1. 1.Department of ChemistryDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia

Personalised recommendations