Journal of Cluster Science

, Volume 25, Issue 2, pp 377–385 | Cite as

1D Chain-Like Architecture in Anderson Heteropolymolybdate {[Eu(H2O)6]2(TeMo6O24)}·6H2O: Synthesis and Characterization

  • Miao Yu
  • Bo Gao
  • Dadong Liang
Original Paper


A new Anderson-based heteropolymolybdate {[Eu(H2O)6]2(TeMo6O24)}·6H2O (1) has been hydrothermally synthesized and characterized by elemental analyses, IR, thermal stability analysis, XRD and single crystal X-ray diffraction. Compound 1 crystallizes in the triclinic system, space group P-1, a = 9.4023(6) Å, b = 10.2530(7) Å, c = 10.6525(10) Å, α = 101.583(7)º, β = 108.024(7)º, γ = 107.150(6)º, V = 883.60(12) Å3, Z = 1, R1 = 0.0338, wR2 = 0.0849. Compound 1 exhibits 1D chain-like structure formed by the alternative connection between Anderson type polyoxoanions [TeMo6O24]6− and Eu3+ along a-axis. Compound 1 displays good fluorescent emission of the Eu3+ ion at room temperature.


Polyoxometalate Anderson-type anion Hydrothermal synthesis Lanthanide 



This work was supported by the Technology Department of Jilin Province of China (Grant no. 2009324) and the Analysis and Testing Foundation of Northeast Normal University.

Supplementary material

10876_2013_616_MOESM1_ESM.pdf (164 kb)
Supplementary material (PDF 163 kb)


  1. 1.
    M. T. Pope Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).CrossRefGoogle Scholar
  2. 2.
    M. T. Pope and A. Müller Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications (Kluwer Academic Publishers, Dordrecht, 2001).Google Scholar
  3. 3.
    C. L. Hill and C. M. P. McCartha (1995). Coord. Chem. Rev. 143, 407.CrossRefGoogle Scholar
  4. 4.
    Y. Izumi, K. Urabe, and M. Onaka Zeolites Clay and Heteropoly Acid in Organic Reactions (Kodanshal, Tokyo, 1992).Google Scholar
  5. 5.
    M. T. Pope and A. Müller Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity (Kluwer Academic Publishers, Dordrecht, 1994).CrossRefGoogle Scholar
  6. 6.
    Y. Guo, Y. Wang, C. Hu, Y. Wang, and E. Wang (2000). Chem. Mater. 12, 3501.CrossRefGoogle Scholar
  7. 7.
    H. An, E. Wang, D. Xiao, Y. Li, and L. Xu (2005). Inorg. Chem. Commun. 8, 267.Google Scholar
  8. 8.
    H. An, D. Xiao, E. Wang, Y. Li, and L. Xu (2005). New J. Chem. Commun. 29, 667.CrossRefGoogle Scholar
  9. 9.
    V. Shivaish, P. V. Narasimha Reddy, L. Cronin, and S. K. Das (2002). Dalton Trans. 44, 3781.CrossRefGoogle Scholar
  10. 10.
    V. Shivaish, M. Nagaraju, and S. K. Das (2003). Inorg. Chem. 42, 6604.CrossRefGoogle Scholar
  11. 11.
    D. Drewes, E. M. Limanski, and B. Krebs (2004). Eur. J. Inorg. Chem. 17, 4849.CrossRefGoogle Scholar
  12. 12.
    D. Drewes, E.M. Limanski, B. Krebs (2004). J. Chem. Soc. Dalton Trans. 2087.Google Scholar
  13. 13.
    D. Drewes, B. Krebs, and Z. Anorg (2005). Allg. Chem. 631, 2591.CrossRefGoogle Scholar
  14. 14.
    M. Sadakane, M. H. Dickman, and M. T. Pope (2000). Angew. Chem. Int. Ed. Engl. 39, 2914.CrossRefGoogle Scholar
  15. 15.
    S. X. Liu, D. H. Li, L. H. Xie, H. Y. Cheng, X. Y. Zhao, and Z. M. Su (2006). Iorg. Chem. 46, 8036.CrossRefGoogle Scholar
  16. 16.
    J. F. Cao, S. X. Liu, R. G. Cao, L. H. Xie, Y.H. Ren, C.Y. Gao, L. Xu, J. Chem. Soc. Dalton Trans. (2008) 115.Google Scholar
  17. 17.
    F. Hussain and G. R. Patzke (2011). Cryst. Eng. Comm. 13, 530.CrossRefGoogle Scholar
  18. 18.
    P. Mialane, A. Dolbecq, F. Sécheresse, Chem. Commun. (2006) 3477.Google Scholar
  19. 19.
    L. X. Shi, W. F. Zhao, X. Xu, J. Tang, and C. D. Wu (2011). Inorg. Chem. 50, 12387.CrossRefGoogle Scholar
  20. 20.
    C. D. Wu, C. Z. Lu, H. H. Zhuang, and J. S. Huang (2002). J. Am. Chem. Soc. 124, 3836.CrossRefGoogle Scholar
  21. 21.
    B. Gao, S. X. Liu, L. H. Xie, M. Yu, C. D. Zhang, C. Y. Sun, and H. Y. Cheng (2006). J. Solid State Chem. 179, 1681.CrossRefGoogle Scholar
  22. 22.
    Y. Liu, S. X. Liu, R. G. Cao, H. M. Ji, S. W. Zhang, and Y. H. Ren (2008). J. Solid State Chem. 181, 2237.CrossRefGoogle Scholar
  23. 23.
    Y. Liu, Y. X. Li, S. W. Zhang, H. M. Ji, R. G. Cao, and S. X. Liu (2009). J. Mol. Struct. 921, 114.CrossRefGoogle Scholar
  24. 24.
    G. M. Sheldrick SHELXS 97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, 1997).Google Scholar
  25. 25.
    D. Brown and D. Altermatt (1985). Acta Crystallogr. B41, 244.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of FoundationJilin Business and Technology CollegeChangchunPeople’s Republic of China
  2. 2.Department of Resources and EnvironmentJilin Agriculture UniversityChangchunPeople’s Republic of China

Personalised recommendations