Journal of Cluster Science

, Volume 25, Issue 2, pp 337–348 | Cite as

Synthesis of Platinum Nanoparticles-Decorated Poly(p-Phenylenediamine) Colloids with a High Performance for Methanol Electrocatalysis for Direct Methanol Fuel Cells

  • Siwei Yang
  • Chenshu Hu
  • Dong Liu
  • Tingting Zhang
  • Tingting Guo
  • Fang Liao
Original Paper


In this paper, the Pt/Poly(p-phenylenediamine) (Pt/PpPD) nanocomposite was synthesized via hydrothermal condition with H2PtCl6 as oxidant. The H2PtCl6 is an oxidant in formation process of PpPD and also played a role as the platinum source. The synthesis technique of this material is simple and the carrier material is low-cost. The spherical Pt nanoparticles which the diameter is about 50 nm are symmetrical dispersed on elliptical PpPD nanoparticles. The structure and morphologies of the composite were characterized with IR, Raman spectroscopy, XRD and scanning electron microscope. Electrocatalytic activity measurements shows the Pt/PpPD nanocomposite have good electrochemical performance for methanol fuel cells. The origin of good electrochemical performance for methanol of Pt/PpPD colloids is studied. The possible formation mechanism involved is also discussed.


Polymers Colloids Direct methanol fuel cells Nanocomposite 



This work was supported by China West Normal University Fund (12B017).


  1. 1.
    C. Colliex (2012). Science 336, 44.CrossRefGoogle Scholar
  2. 2.
    K. Y. Chan, J. Ding, J. Ren, S. Cheng, and K. Y. Tsang (2004). J. Mater. Chem. 14, 505.CrossRefGoogle Scholar
  3. 3.
    K. Sundmacher (2010). Ind. Eng. Chem. Res. 49, 10159.CrossRefGoogle Scholar
  4. 4.
    S. Wasmus and A. Küver (1999). J. Electroanal. Chem. 461, 14.CrossRefGoogle Scholar
  5. 5.
    Y. H. Lin, X. L. Cui, C. H. Yen, and C. M. Wai (2005). Langmuir 21, 11474.CrossRefGoogle Scholar
  6. 6.
    M. Winter and R. Brodd (2004). J. Chem. Rev. 104, 4245.CrossRefGoogle Scholar
  7. 7.
    A. S. Aricò, S. Srinivasan, and V. Antonucci (2001). Fuel Cells 1, 133.CrossRefGoogle Scholar
  8. 8.
    C. A. Bessel, K. Laubernds, N. M. Rodriguez, and R. T. K. Baker (2011). J. Phys. Chem. B 105, 1115.CrossRefGoogle Scholar
  9. 9.
    H. Tang, J. H. Chen, L. H. Nie, D. Y. Liu, W. Deng, Y. F. Kuang, and S. Z. Yao (2004). J. Colloid Interface Sci. 269, 26.CrossRefGoogle Scholar
  10. 10.
    Y. Li, W. Gao, L. Ci, C. Wang, and P. M. Ajayan (2010). Carbon 48, 1124.CrossRefGoogle Scholar
  11. 11.
    J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen (2007). Science 315, 490.CrossRefGoogle Scholar
  12. 12.
    S. Park and R. S. Ruoff (2009). Nat. Nanotechnol. 4, 217.CrossRefGoogle Scholar
  13. 13.
    T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, and J. Nakamura (2004). Chem. Commun. 7, 840.Google Scholar
  14. 14.
    W. Z. Li, C. H. Liang, W. J. Zhou, J. S. Qiu, H. Q. Li, G. Q. Sun, and Q. Xin (2004). Carbon 42, 436.CrossRefGoogle Scholar
  15. 15.
    G. A. Olah (2005). Angew. Chem. Int. Ed. 44, 2636.CrossRefGoogle Scholar
  16. 16.
    N. C. Bigall, T. Härtling, M. Klose, P. Simon, L. M. Eng, and A. Eychmüller (2008). Nano Lett. 8, 4588.CrossRefGoogle Scholar
  17. 17.
    C. Nethravathi, E. A. Anumol, M. Rajamathi, and N. Ravishankar (2011). Nanoscale 3, 569.CrossRefGoogle Scholar
  18. 18.
    J. Zhang, B. Jing, N. Tokutake, and S. L. Regen (2004). J. Am. Chem. Soc. 126, 10856.CrossRefGoogle Scholar
  19. 19.
    H. Ye and R. M. Crooks (2005). J. Am. Chem. Soc. 127, 4930.CrossRefGoogle Scholar
  20. 20.
    Z. Wen, Q. Wang, and J. Li (2008). Adv. Funct. Mater. 18, 959.CrossRefGoogle Scholar
  21. 21.
    T. Kijima, T. Yoshimura, M. Uota, T. Ikeda, D. Fujikawa, S. Mouri, and S. Uoyama (2004). Angew. Chem. Int. Ed. 43, 228.CrossRefGoogle Scholar
  22. 22.
    Y. Yamauchi, A. Takai, T. Nagaura, S. Inoue, and K. Kuroda (2008). J. Am. Chem. Soc. 130, 5426.CrossRefGoogle Scholar
  23. 23.
    C. Kim, Y. J. Kim, Y. A. Kim, T. Yanagisawa, K. C. Park, M. Endo, and M. S. Dresselhaus (2004). J. Appl. Phys. 96, 5903.CrossRefGoogle Scholar
  24. 24.
    S. J. Liao, K. A. Holmes, H. Tsaprailis, and V. I. Birss (2006). J. Am. Chem. Soc. 128, 3504.CrossRefGoogle Scholar
  25. 25.
    H. K. Jeong, Y. P. Lee, R. J. W. E. Lahaye, M. H. Park, K. H. An, I. J. Kim, C. W. Yang, C. Y. Park, R. S. Ruoff, and Y. H. Lee (2008). J. Am. Chem. Soc. 130, 1362.CrossRefGoogle Scholar
  26. 26.
    B. Seger and P. V. Kamat (2009). J. Phys. Chem. C 113, 7990.CrossRefGoogle Scholar
  27. 27.
    X. R. Ye, Y. H. Lin, C. M. Wang, and C. M. Wai (2003). Adv. Mater. 15, 316.CrossRefGoogle Scholar
  28. 28.
    A. K. Geim and K. S. Novoselov (2007). Nat. Mater. 6, 183.CrossRefGoogle Scholar
  29. 29.
    C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, and Yan (2004). Nano Lett. 4, 345.CrossRefGoogle Scholar
  30. 30.
    Y. Yamauchi, A. Sugiyama, R. Morimoto, A. Takai, and K. Kuroda (2008). Angew. Chem. Int. Ed. 47, 5371.CrossRefGoogle Scholar
  31. 31.
    M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar (2009). ACS Nano 3, 3884.CrossRefGoogle Scholar
  32. 32.
    G. Girishkumar, K. Vinodgopal, and P. V. Kamat (2004). J. Phys. Chem. B 108, 19960.CrossRefGoogle Scholar
  33. 33.
    C. K. Chiang, C. R. Fincher Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid (1977). Phys. Rev. Lett. 39, 1098.CrossRefGoogle Scholar
  34. 34.
    C. Zhou, J. Han, and R. Guo (2009). Rapid Commun. Mass Spectrom. 30, 182.CrossRefGoogle Scholar
  35. 35.
    J. Stejskal, I. Sapurina, M. Trchova, E. N. Konyushenko, and P. Holler (2006). Polymer 47, 8253.CrossRefGoogle Scholar
  36. 36.
    P. Zhao, J. Jiang, F. W. Zhang, W. F. Zhao, J. T. Liu, and R. Li (2010). Carbohydr. Polym. 81, 751.CrossRefGoogle Scholar
  37. 37.
    X. Sun, S. Dong, and E. Wang (2005). J. Am. Chem. Soc. 127, 13102.CrossRefGoogle Scholar
  38. 38.
    X. Sun and M. Hagner (2007). Langmuir 23, 9147.CrossRefGoogle Scholar
  39. 39.
    H. Li, Y. Zhang, Y. Luo, and X. Sun (2011). Small 7, 1562.CrossRefGoogle Scholar
  40. 40.
    Y. Zhang, H. Li, Y. Luo, X. Shi, J. Tian, and X. Sun (2011). PLoS ONE 6, 20569.CrossRefGoogle Scholar
  41. 41.
    J. Zhai, H. Li, and X. Sun (2011). RSC Adv. 1, 36.CrossRefGoogle Scholar
  42. 42.
    H. Li, J. Tian, L. Wang, Y. Zhang, and X. Sun (2011). J. Mater. Chem. 21, 824.CrossRefGoogle Scholar
  43. 43.
    J. Tian, H. Li, Y. Luo, L. Wang, Y. Zhang, and X. Sun (2011). Langmuir 27, 874.CrossRefGoogle Scholar
  44. 44.
    J. Tian, Y. Zhang, Y. Luo, H. Li, J. Zhai, and X. Sun (2011). Analyst 136, 2221.CrossRefGoogle Scholar
  45. 45.
    Z. F. Wang, F. Liao, T. T. Guo, S. W. Yang, and C. M. Zeng (2011). J. Electroanal. Chem. 664, 135.CrossRefGoogle Scholar
  46. 46.
    Z. F. Wang, F. Liao, S. W. Yang, and T. T. Guo (2011). Fiber. Polym. 12, 997.CrossRefGoogle Scholar
  47. 47.
    Z. F. Wang, F. Liao, S. W. Yang, and T. T. Guo (2011). Mater. Lett. 67, 121.CrossRefGoogle Scholar
  48. 48.
    P. Xiong, Q. Chen, M. He, X. Sun, and X. Wang (2012). J. Mater. Chem. 22, 7485.Google Scholar
  49. 49.
    P. Xiong, Y. Fu, L. Wang, and X. Wang (2012). Chem. Eng. J. 196, 149.CrossRefGoogle Scholar
  50. 50.
    S. W. Yang and F. Liao (2012). Synth. Met. 162, 1343.CrossRefGoogle Scholar
  51. 51.
    S. W. Yang and F. Liao (2011). NANO 6, 597.CrossRefGoogle Scholar
  52. 52.
    F. Liao, Z. F. Wang, and X. Q. Hu (2011). J. Colloid Interface Sci. 73, 504.CrossRefGoogle Scholar
  53. 53.
    Z. F. Wang, F. Liao, S. W. Yang, and T. T. Guo (2012). Synth. Met. 162, 444.CrossRefGoogle Scholar
  54. 54.
    Z. F. Wang, F. Liao, T. T. Guo, and S. W. Yang (2012). J. Electroanal. Chem. 664, 135.CrossRefGoogle Scholar
  55. 55.
    Z. F. Wang, F. Liao, T. T. Guo, and S. W. Yang (2012). Mater. Lett. 67, 121.CrossRefGoogle Scholar
  56. 56.
    S. W. Yang, S. Huang, D. Liu, and F. Liao (2012). Synth. Met. 162, 2228.CrossRefGoogle Scholar
  57. 57.
    S. W. Yang, D. Liu, F. Liao, T. T. Guo, Z. P. Wu, and T. T. Zhang (2012). Synth. Met. 162, 2329.CrossRefGoogle Scholar
  58. 58.
    W. Wang, O. Rusin, X. Xu, K. K. Kim, J. O. Escobedo, S. O. Fakayode, K. A. Fletcher, M. Lowry, and C. M. Schowalter (2005). J. Am. Chem. Soc. 127, 15949.CrossRefGoogle Scholar
  59. 59.
    X. Sun, S. Dong, and E. Wang (2005). J. Am. Chem. Soc. 127, 13102.CrossRefGoogle Scholar
  60. 60.
    X. Sun and M. Hagner (2007). Langmuir 23, 9147.CrossRefGoogle Scholar
  61. 61.
    J. Han, G. Song, and R. Guo (2007). Eur. Polym. J. 143, 4229.CrossRefGoogle Scholar
  62. 62.
    J. J. Wang, J. Jiang, and B. Hu (2008). Adv. Funct. Mater. 18, 1105.CrossRefGoogle Scholar
  63. 63.
    S. Sharma, A. Ganguly, P. Papakonstantinou, X. P. Miao, M. X. Li, J. L. Hutchison, M. Delichatsios, and S. Ukleja (2010). J. Phys. Chem. C 114, 19459.CrossRefGoogle Scholar
  64. 64.
    A. M. Hofstead-Duffy, D.-J. Chen, S.-G. Sun, and Y. J. Tong (2012). J. Mater. Chem. 22, 5205.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Siwei Yang
    • 1
  • Chenshu Hu
    • 2
  • Dong Liu
    • 3
  • Tingting Zhang
    • 1
  • Tingting Guo
    • 1
  • Fang Liao
    • 1
  1. 1.Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical IndustryChina West Normal UniversityNanchongPeople’s Republic of China
  2. 2.School of Naval Architecture and Ocean EngineeringJiangsu University of Science and TechnologyZhenjiangPeople’s Republic of China
  3. 3.School of Chemistry and Chemical IndustryNantong UniversityNantongPeople’s Republic of China

Personalised recommendations