Advertisement

Journal of Cluster Science

, Volume 24, Issue 4, pp 1021–1030 | Cite as

Two Bisupporting Keggin-Type POM-Based Hybrids Decorated by [Zn(phen)2]2+ Fragments

  • Kundawlet Alimaje
  • Xiang Wang
  • Zhe-Yu Zhang
  • Jun Peng
  • Zhen-Yu Shi
  • Xia Yu
  • Zi-Xing Ren
Original Paper

Abstract

Two bisupporting Keggin-type polyoxoanion-based hybrids decorated by [Zn(phen)2]2+ complexes, [Zn(phen)2]2(PW 11 VI WVO40) (1) and K[Zn(phen)2(H2O)]2(OH) (SiW12O40)·H2O (2) (phen = 1,10′-phenanthroline), have been hydrothermally synthesized, and characterized by elemental analysis, IR spectra, UV–Vis spectrum, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, and single-crystal X-ray diffraction. The structural analyses reveal that compound 1 consists of a 0D bisupporting Keggin-type heteropoly blue cluster obtained by using reductant glucose, which is grafted by two [Zn(phen)2]2+ fragments; compound 2 presents a 1D infinite chain, which is constructed from bisupporting [SiW12O40]4− polyoxoanions decorated by [Zn(phen)2(H2O)]2+ fragments and K+ ions. Additionally, the electrochemical behaviors of two compounds were studied.

Keywords

Polyoxometalates  Bisupporting  [Zn(phen)2]2+ fragments  Hydrothermal synthesis 

Notes

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (21071029).

Supplementary material

10876_2013_594_MOESM1_ESM.doc (544 kb)
Supplementary material 1 (DOC 544 kb)

References

  1. 1.
    D. L. Long, R. Tsunashima, and L. Cronin (2010). Angew. Chem. Int. Ed. 49, 1736.CrossRefGoogle Scholar
  2. 2.
    H. N. Miras, J. Yan, D. L. Long, and L. Cronin (2012). Chem. Soc. Rev. 41, 7403.CrossRefGoogle Scholar
  3. 3.
    C. Ritchie, E. M. Burkholder, D. L. Long, D. Adam, P. Kogerler, and L. Cronin (2007). Chem. Commun. 0, 468.CrossRefGoogle Scholar
  4. 4.
    M. T. Pope, Heteropoly and Isopoly Oxometalates, (Springer, Berlin, 1983).Google Scholar
  5. 5.
    M. T. Pope and A. Müller (1991). Angew. Chem. Int. Ed. 30, 34.CrossRefGoogle Scholar
  6. 6.
    V. Soghmonian, Q. Chem, R. C. Haushalter, and J. Zubieta (1993). Science. 259, 1596.CrossRefGoogle Scholar
  7. 7.
    K. Fukaya and T. Yamase (2003). Angew. Chem. Int. Ed. 42, 654.CrossRefGoogle Scholar
  8. 8.
    X. M. Zhang, M. L. Tong, and X. M. Chen (2000). Chem. Commun. 18, 1817.CrossRefGoogle Scholar
  9. 9.
    L. H. Bi, R. D. Huang, J. Peng, E. B. Wang, Y. H. Wang and C. W. Hu (2001). J. Chem. Soc. Dalton Trans. 30, 121.Google Scholar
  10. 10.
    Q. Zhai, X. Wu, S. Chen, L. Chen, and C. Lu (2007). Inorg. Chim. Acta. 360, 3484.CrossRefGoogle Scholar
  11. 11.
    H. H. Yu, X. B. Cui, J. Lu, Y. H. Sun, W. J. Duan, J. W. Cui, Z. H. Yi, J. Q. Xu, and T. G. Wang (2008). J. Mol. Struct. 879, 156.CrossRefGoogle Scholar
  12. 12.
    Y. Wang, D. R. Xiao, E. B. Wang, L. L. Fan, and J. Liu (2007). Transit. Metal Chem. 32, 950.CrossRefGoogle Scholar
  13. 13.
    Y. Shen, J. Peng, H. Zhang, C. Chen, F. Zhang, and A. M. Bond (2011). J. Mater. Chem. 21, 6995.CrossRefGoogle Scholar
  14. 14.
    Z. G. Han, H. Y. Ma, J. Peng, Y. H. Chen, E. B. Wang, and N. H. Hu (2004). Inorg. Chem. Commun. 7, 182.CrossRefGoogle Scholar
  15. 15.
    G. Y. Luan, Y. G. Li, S. T. Wang, E. B. Wang, Z. B. Han, C. W. Hu, N. H. Hu, and H. Q. Jia (2003). Dalton. Trans. 32, 233.Google Scholar
  16. 16.
    S. Reinoso, P. Vitoria, L. Lezama, A. Luque, and J. M. Gutiérrez-Zorrilla (2003). Inorg. Chem. 42, 3709.CrossRefGoogle Scholar
  17. 17.
    W. Huang, L. Todaro, G. P. A. Yap, R. Beer, L. C. Francesconi, and T. Polenova (2004). J. Am. Chem. Soc. 126, 11564.CrossRefGoogle Scholar
  18. 18.
    Y. Ishii, Y. Takenaka, and K. Konishi (2004). Angew. Chem. Int. Ed. 43, 2702.CrossRefGoogle Scholar
  19. 19.
    U. Kortz, S. Nellutla, A. C. Stowe, N. S. Dalal, J. van Tol, and B. S. Bassil (2003). Inorg. Chem. 43, 144.CrossRefGoogle Scholar
  20. 20.
    U. Kortz, S. Nellutla, A. C. Stowe, N. S. Dalal, U. Rauwald, W. Danquah, and D. Ravot (2004). Inorg. Chem. 43, 2308.CrossRefGoogle Scholar
  21. 21.
    L. H. Bi, U. Kortz, S. Nellutla, A. C. Stowe, J. van Tol, N. S. Dalal, B. Keita, and L. Nadjo (2005). Inorg. Chem. 44, 896.CrossRefGoogle Scholar
  22. 22.
    S. Chang, C. Qin, E. B. Wang, Y. G. Li, and X. L. Wang (2006). Inorg. Chem. Commun. 9, 727.CrossRefGoogle Scholar
  23. 23.
    C. M. Wang, S. T. Zheng, and G. Y. Yang (2009). J. Clust. Sci. 20, 489.CrossRefGoogle Scholar
  24. 24.
    Y. Xu, J. Q. Xu, K. L. Zhang, Y. Zhang, and X. Z. You (2000). Chem. Commun. 36, 153.Google Scholar
  25. 25.
    M. Yuan, Y. G. Li, E. B. Wang, C. G. Tian, L. Wang, C. W. Hu, N. H. Hu, and H. Q. Jia (2003). Inorg. Chem. 42, 3670.CrossRefGoogle Scholar
  26. 26.
    J. W. Cui, X. B. Cui, H. H. Yu, J. Q. Xu, Z. H. Yi, and W. J. Duan (2008). Inorg. Chim. Acta. 361, 2641.CrossRefGoogle Scholar
  27. 27.
    L. M. Dai, Y. Ma, E. B. Wang, Y. Lu, X. X. Xu, and X. L. Bai (2006). Transit. Metal Chem. 31, 340.CrossRefGoogle Scholar
  28. 28.
    Y. Y. Zhu, L. Shen, C. X. Qin, and X. Wei (2007). Chin. J. Inorg. Chem. 23, 310.Google Scholar
  29. 29.
    L. M. Dai, W. S. You, E. B. Wang, X. L. Wang, X. M. Han, W. W. Li, and Y. Fang (2009). Inorg. Chim. Acta. 362, 4967.CrossRefGoogle Scholar
  30. 30.
    A. Tézé and G. Hervé (1977). J. Inorg. Nucl. Chem. 39, 999.CrossRefGoogle Scholar
  31. 31.
    G. M. Sheldrick, SHELXS-97, Program for solution of crystal structures (University of Göottingen, Germany, 1997).Google Scholar
  32. 32.
    G. M. Sheldrick, SHELXS-97, Program for refinement of crystal structures (University of Göottingen, Germany, 1997).Google Scholar
  33. 33.
    Y.-K. Lu, X.-B. Cui, Y. Chen, J.-N. Xu, Q.-B. Zhang, Y.-B. Liu, J.-Q. Xu, and T.-G. Wang (2009). J. Solid State Chem. 182, 2111.CrossRefGoogle Scholar
  34. 34.
    N. E. Brese and M. O’Keeffe (1991). Acta Crystallogr. B. 47, 192.CrossRefGoogle Scholar
  35. 35.
    C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, and R. Thouvenot (1983). Inorg. Chem. 22, 207.CrossRefGoogle Scholar
  36. 36.
    C. L. Meng, P. P. Zhang, J. Peng, X. Wang, Y. Shen, M. G. Liu, D. D. Wang, and K. Alimaje (2012). J. Clust. Sci. 23, 567.CrossRefGoogle Scholar
  37. 37.
    X. Wang, J. Peng, M. G. Liu, D. D. Wang, C. L. Meng, Y. Li, and Z. Y. Shi (2012). CrystEngComm. 14, 3220.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kundawlet Alimaje
    • 1
    • 2
  • Xiang Wang
    • 1
  • Zhe-Yu Zhang
    • 1
  • Jun Peng
    • 1
  • Zhen-Yu Shi
    • 1
  • Xia Yu
    • 1
  • Zi-Xing Ren
    • 1
  1. 1.Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of ChemistryNortheast Normal UniversityChangchunPeople’s Republic of China
  2. 2.School of Chemistry and BioscienceYili Normal UniversityYiningPeople’s Republic of China

Personalised recommendations