Journal of Cluster Science

, Volume 24, Issue 3, pp 865–879 | Cite as

Carbon Doping of Defect Sites in Stone–Wales Defective Boron-nitride Nanotubes: A Density Functional Theory Study

Original Paper


We have performed a density functional theory study to investigate the effect of carbon doping on Stone–Wales (SW) defective sites in the armchair (4, 4), (5, 5) and (6, 6) BNNTs, in order to remove structural instability induced by homonuclear N–N and B–B bonds. Two different orientations of SW defect are considered, parallel and diagonal, and then C atoms are doped at different positions of the defect sites. In general, it seems that among the considered arrangements, C atoms prefer to be substituted for the homonuclear B–B bond. The larger HOMO–LUMO band gaps for the most stable configurations indicate that C doping at B–B sites is kinetically more favorable than the other ones. According to calculated nuclear quadrupole resonance (NQR) parameters as a result of C-doping on SW defective sites, the quadrupole coupling constants (C Q ) of boron nuclei at defective sites decrease by about 0.508–1.406 MHz while 14N C Q of the defective sites, except for N8, increases. Interestingly, C Q of the N sites directly connected to dopant sites has maximum increment (0.612–2.596 MHz) while C Q of the N sites belonging to the B2N3 pentagon is undergone to some minor changes.


Stone–Wales defect Doping BNNTs DOS NQR DFT 

Supplementary material

10876_2013_584_MOESM1_ESM.docx (236 kb)
Supplementary material 1 (DOCX 236 kb)


  1. 1.
    A. J. Stone and D. J. Wales (1986). Chem. Phys. Lett. 128, 501.CrossRefGoogle Scholar
  2. 2.
    M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber, M. Tinkham, and H. Park (2001). Science 291, 283.CrossRefGoogle Scholar
  3. 3.
    T. Maltezopoulos, A. Kubetzka, M. Morgenstern, R. Wiesendanger, S. G. Lemay, and C. Dekker (2003). Appl. Phys. Lett. 83, 1011.CrossRefGoogle Scholar
  4. 4.
    A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima (2004). Nature 430, 870.CrossRefGoogle Scholar
  5. 5.
    M. B. Nardelli, B. I. Yakobson, and R. Bernholc (1998). J. Phys. Rev. B 57, 4277.CrossRefGoogle Scholar
  6. 6.
    Y. Li, Z. Zhou, D. Golberg, Y. Bando, P. V. R. Schleyer, and Z. Chen (2008). J. Phys. Chem. C 112, 1365.CrossRefGoogle Scholar
  7. 7.
    H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen (2000). Phys. Rev. Lett. 84, 2917.CrossRefGoogle Scholar
  8. 8.
    A. Hirsch (2002). Angew. Chem. Int. Ed. 41, 1853.CrossRefGoogle Scholar
  9. 9.
    J. C. Charlier (2002). Acc. Chem. Res. 35, 1063.CrossRefGoogle Scholar
  10. 10.
    P. C. P. Watts, W. K. Hsu, H. W. Kroto, and D. R. M. Walton (2003). Nano. Lett. 3, 549.CrossRefGoogle Scholar
  11. 11.
    A. Rubio, J. L. Corkill, and M. L. Cohen (1994). Phys. Rev. B 49, 5081.CrossRefGoogle Scholar
  12. 12.
    N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl (1995). Science 269, 966.CrossRefGoogle Scholar
  13. 13.
    Z. Zhou, J. Zhao, Z. Chen, and P. V. R. Schleyer (2006). J. Phys. Chem. B 110, 25678.CrossRefGoogle Scholar
  14. 14.
    Z. Zhou, J. Zhao, Z. Chen, X. Gao, J. P. Lu, P. V. R. Schleyer, and C.-K. Yang (2006). J. Phys. Chem. B 110, 2529.CrossRefGoogle Scholar
  15. 15.
    H. F. Bettinger, T. Dumitrica, G. E. Scuseria, and B. I. Yakobson (2002). Phys. Rev. B 65, 041406.CrossRefGoogle Scholar
  16. 16.
    R. Z. Ma, D. Golberg, Y. Bando, and T. Sasaki (2004). Philos. Trans. R. Soc. Lond Ser A 362, 2161.CrossRefGoogle Scholar
  17. 17.
    D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, and H. Yusa (1996). Appl. Phys. Lett. 69, 2045.CrossRefGoogle Scholar
  18. 18.
    Y. Saito and M. Maida (1999). J. Phys. Chem. A 103, 1291.CrossRefGoogle Scholar
  19. 19.
    W. Chen, Y. Li, G. Yu, Z. Zhou, and Z. Chen (2009). J. Chem. Theory Comput. 5, 3088.CrossRefGoogle Scholar
  20. 20.
    X. Blase, A. D. Vita, J.-C. Charlier, and R. Car (1998). Phys. Rev. Lett. 80, 1666.CrossRefGoogle Scholar
  21. 21.
    W. An, X. Wu, J. L. Yang, and X. C. Zeng (2007). J. Phys. Chem. C 111, 14105.CrossRefGoogle Scholar
  22. 22.
    J. K. Burdett (1983). J. Phys. Chem. 87, 4368.CrossRefGoogle Scholar
  23. 23.
    S. Lassoued, R. Gautier, A. Boutarfaia, and J.-F. Halet (2010). J. Organomet. Chem. 95, 983.Google Scholar
  24. 24.
    X. Rocquefelte, S. E. Boulfelfel, M. Ben Yahia, J. Bauer, J.-Y. Saillard, and J.-F. Halet (2005). Angew. Chem. Int. Ed. 44, 7542.CrossRefGoogle Scholar
  25. 25.
    P. Piquini, R. J. Baierle, T. M. Schmidt, and A. Fazzio (2005). Nanotechnology 16, 827.CrossRefGoogle Scholar
  26. 26.
    T. M. Schmidt, R. J. Baierle, P. Piquini, and A. Fazzio (2003). Phys. Rev. B 67, 113407.CrossRefGoogle Scholar
  27. 27.
    Z. Zhou, J. Zhao, Z. Chen, X. Gao, T. Yan, B. Wen, and P. V. R. Schleyer (2006). J. Phys. Chem. B 110, 13363.CrossRefGoogle Scholar
  28. 28.
    X. J. Wu, J. L. Yang, J. G. Hou, and Q. S. Zhu (2006). J. Chem. Phys. 124, 54706.CrossRefGoogle Scholar
  29. 29.
    J. Zhang, K. P. Loh, J. Zheng, M. B. Sullivan, and P. Wu (2007). Phys. Rev. B 75, 245301.CrossRefGoogle Scholar
  30. 30.
    R. J. Baierlea, T. M. Schmidt, and A. Fazzioc (2007). Solid State Commun. 142, 49.CrossRefGoogle Scholar
  31. 31.
    R. Q. Wu, L. Liu, G. W. Peng, and Y. P. Feng (2005). Appl. Phys. Lett. 86, 122510.CrossRefGoogle Scholar
  32. 32.
    R. J. Baierle, P. Piquini, T. M. Schmidt, and A. Fazzio (2006). J. Phys. Chem. B 110, 21184.CrossRefGoogle Scholar
  33. 33.
    G. Kim, J. Park, and S. Hong (2012). Chem. Phys. Lett. 522, 79.CrossRefGoogle Scholar
  34. 34.
    Y. Miyamoto, A. Rubio, S. Berber, M. Yoon, and D. Tománek (2004). Phys. Rev. B 69, 121413.CrossRefGoogle Scholar
  35. 35.
    M. Ishigami, H. J. Choi, S. Aloni, S. G. Louie, M. L. Cohen, and A. Zettl (2004). Phys. Rev. Lett. 93, 196803.CrossRefGoogle Scholar
  36. 36.
    V. Skákalová, J. Maultzsch, Z. Osváth, L. P. Biró, and S. Roth (2007). Phys. Status Solid. 1, 138.Google Scholar
  37. 37.
    S. K. Doorn, L. Zheng, M. J. O’Connell, Y. Zhu, S. Huang, and J. Liu (2005). J. Phys. Chem. B 109, 3751.CrossRefGoogle Scholar
  38. 38.
    R. Ghafouri and M. Anafcheh (2013). Superlattices Microstruct. 55, 33.CrossRefGoogle Scholar
  39. 39.
    T. P. Das and E. L. Han Nuclear quadrupole resonance spectroscopy (Academic Press, New York, 1958).Google Scholar
  40. 40.
    M. Anafcheh and R. Ghafouri (2012). Phys. E 45, 183.CrossRefGoogle Scholar
  41. 41.
    M. Anafcheh and R. Ghafouri (2012). Solid State Sci. 14, 381.CrossRefGoogle Scholar
  42. 42.
    M. Mirzaei and N. L. Hadipour (2008). Phys. E 40, 800.CrossRefGoogle Scholar
  43. 43.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople Gaussian 98 (Gaussian. Inc., Pittsburgh, 1998).Google Scholar
  44. 44.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  45. 45.
    P. C. Hariharan and J. A. Pople (1974). Mol. Phys. 27, 209.CrossRefGoogle Scholar
  46. 46.
    Y. Zhang, A. Wu, X. Xu, and Y. Yan (2007). J. Phys. Chem. A 111, 9431.CrossRefGoogle Scholar
  47. 47.
    P. Pyykkö (2001). Mol. Phys. 99, 1617.CrossRefGoogle Scholar
  48. 48.
    M. Mirzaei (2009). Phys. E 41, 883.CrossRefGoogle Scholar
  49. 49.
    S.-P. Ju, Y.-C. Wang, and T.-W. Lien (2011). Nanoscale Res. Lett. 6, 160.CrossRefGoogle Scholar
  50. 50.
    J.-C. Charlier, X. Blase, A. De Vita, and R. Car (1999). Appl. Phys. A 68, 267.CrossRefGoogle Scholar
  51. 51.
    D. Srivastava, M. Menon, and K. Cho (2001). Phys. Rev. B 63, 195413.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of ChemistryShahr-e-Ray Branch, Islamic Azad UniversityTehranIran

Personalised recommendations