Advertisement

Journal of Cluster Science

, Volume 24, Issue 3, pp 851–864 | Cite as

A New Organic-Paradodecatungstate Hybrid Compound: Synthesis, Characterization and Crystal Structure

  • Sana Chaalia
  • Jean-Claude Daran
  • Amor Haddad
Original Paper
  • 214 Downloads

Abstract

An organic–inorganic hybrid compound Na2(HAn)8[H2W12O42]·16H2O (HAn: p-anisidinium, C7H10NO) has been synthesized under soft acidic conditions and characterized by infrared and UV–visible spectroscopies, thermogravimetric analysis, cyclic voltammetry and single crystal X-ray diffraction. The compound crystallizes in the monoclinic P21/n space group with a = 10.1920(4) Å, b = 34.2901(9) Å, c = 14.0745(5) Å, β = 95.830(3)°, V = 4,893.4(3) Å3 and Z = 4. The compound exhibits a 2D supramolecular structure formed by alternated [paradodecatungstate/Na] and p-anisidinium layers. The catalytic activity of the compound for oxidation of cyclooctene with H2O2 was proved and gives rise to good reaction yield.

Keywords

Polyoxometalate Organic–inorganic hybrid Paradodecatungstate 2D supramolecular structure 

Notes

Acknowledgments

This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia.

References

  1. 1.
    M. T. Pope Heteropoly and isopolyoxometalates (Springer, New York, 1983).CrossRefGoogle Scholar
  2. 2.
    A. Müller, F. Peters, M. T. Pope, and D. Gatteschi (1998). Chem. Rev. 98, 239.CrossRefGoogle Scholar
  3. 3.
    D. Y. Du, L. K. Yan, Z. M. Su, S. L. Li, Y. Q. Lan, and E. B. Wang (2013). Coord. Chem. Rev. 257, (3–4), 702.CrossRefGoogle Scholar
  4. 4.
    H. K. Yang, Y. X. Cheng, M. M. Su, Y. Xiao, M. B. Hu, W. Wang, and Q. Wang (2013). Bioorg. Med. Chem. Lett. 23, 1462–1466. doi: 10.1016/j.bmcl.2012.12.081.CrossRefGoogle Scholar
  5. 5.
    D. Li, P. Yin, and T. Liu (2012). Dalton Trans. 41, (10), 2853.CrossRefGoogle Scholar
  6. 6.
    V. Dufaud and F. Lefebvre (2010). Materials 3, 682.CrossRefGoogle Scholar
  7. 7.
    J. R. Galan-Mascaros, C. Gimenez-Saiz, S. Triki, C. J. Gomez-Garcia, E. Coronado, and L. Ouahab (1995). Angew. Chem. Int. Ed. 34, 1460.CrossRefGoogle Scholar
  8. 8.
    D. Fan, J. Hao, and Q. Wei (2012). J. Inorg. Organomet. Polym. Mater. 22, (2), 301.CrossRefGoogle Scholar
  9. 9.
    C. Dablemont, C. G. Hamaker, R. Thouvenot, Z. Sojka, M. Che, E. A. Maatta, and A. Proust (2006). Chem. Eur. J. 12, 9150.CrossRefGoogle Scholar
  10. 10.
    I. A. Razak, S. S. S. Raj, S. Chantrapromma, H. K. Fun, Y. S. Zhou, and X. Z. You (2001). J. Chem. Crystallogr. 31, 255.CrossRefGoogle Scholar
  11. 11.
    C. L. Meng, P. P. Zhang, J. Peng, X. Wang, Y. Shen, M. G. Liu, D. D. Wang, and K. Alimaje (2012). J. Clust. Sci. 23, (2), 567.CrossRefGoogle Scholar
  12. 12.
    F. Mohammadi Zonoz, A. Jamshidi, and S. Tavakoli (2013). Solid State Sci. 17, 83.CrossRefGoogle Scholar
  13. 13.
    Y. Yu, H. Pang, H. Ma, Y. Song, and K. Wang (2013). J. Clust. Sci. 24, (1), 17.CrossRefGoogle Scholar
  14. 14.
    X. X. Li, W. H. Fang, and G. Y. Yang (2010). J. Clust. Sci. 21, (4), 803.CrossRefGoogle Scholar
  15. 15.
    J. Q. Sha, J. Peng, H. S. Liu, J. Chen, A. X. Tian, H. S. Liu, J. Chen, P. P. Zhang, and Z. M. Su (2007). Cryst. Growth Des. 7, 2535.CrossRefGoogle Scholar
  16. 16.
    C. D. Wu, C. Z. Lu, H. H. Zhuang, and J. S. Huang (2002). J. Am. Chem. Soc. 124, 3836.CrossRefGoogle Scholar
  17. 17.
    G. J. Gainsford, N. Robinson, and J. L. Tallon (2002). Acta Cryst. E 58, 521.CrossRefGoogle Scholar
  18. 18.
    I. Loose, M. Bösing, R. Klein, B. Krebs, R. P. Schulz, and B. Scharbert (1997). Inorg. Chim. Acta 263, 99.CrossRefGoogle Scholar
  19. 19.
    L. W. He, B. Z. Lin, X. Z. Liu, X. F. Huang, and Y. L. Feng (2008). Solid State Sci. 10, (3), 237.CrossRefGoogle Scholar
  20. 20.
    L. Lisnard, A. Dolbecq, P. Mialane, J. Marrot, and F. Sécheresse (2004). Inorg. Chim. Acta 357, 845.CrossRefGoogle Scholar
  21. 21.
    B. Z. Lin, Y. M. Chen, and P. D. Liu (2003). Dalton Trans. 12, 2474.CrossRefGoogle Scholar
  22. 22.
    Y. Q. Feng, Q. Z. Huang, D. F. Qiu, and Z. H. Meng (2010). Russ. J. Coord. Chem. 36, (7), 541.CrossRefGoogle Scholar
  23. 23.
    Y. Li, C. Leng, J. Zhao, S. Chen, P. Ma, and L. Chen (2012). Inorg. Chem. Commun. 25, 35.CrossRefGoogle Scholar
  24. 24.
    Y. Chen, J. Peng, H. J. Pang, A. X. Tian, P. P. Zhang, D. Chen, M. Zhu, Y. Wang, and H. Ma (2009). Inorg. Chem. Commun. 12, 1242.CrossRefGoogle Scholar
  25. 25.
    S. Chaalia, B. Ayed, and A. Haddad (2011). Struct. Chem. 22, (1), 167.CrossRefGoogle Scholar
  26. 26.
    D. Dutta, D. Maity, M. Ali, M. G. B. Drew, S. Mondal, and M. Mukherjee (2008). Transit. Met. Chem. 33, 347.CrossRefGoogle Scholar
  27. 27.
    S. Chaalia, J. C. Daran, and A. Haddad (2012). Struct. Chem. 23, 645.CrossRefGoogle Scholar
  28. 28.
    E. P. Koval’chuk, N. V. Stratan, O. V. Reshetnyak, J. Blazejowski, and M. S. Whittingham (2001). Solid State Ionics 141–142, 217–224.CrossRefGoogle Scholar
  29. 29.
    A. Altomare, M. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. Moliterni, G. Polidori, and R. Spagna (1999). J. Appl. Cryst. 32, 115.CrossRefGoogle Scholar
  30. 30.
    G. M. Sheldrick (2008). Acta Cryst. A 64, 112.CrossRefGoogle Scholar
  31. 31.
    Y. H. Tsay and J. V. Silverton (1973). Z. Kristallogr. 137, 256.Google Scholar
  32. 32.
    H. T. Evans Jr, U. Kortz, and G. B. Janeson (1993). Acta Crystallogr. C 49, 856.CrossRefGoogle Scholar
  33. 33.
    W. H. Baur (1974). Acta Crystallogr. B 30, 1195.CrossRefGoogle Scholar
  34. 34.
    I. D. Brown and D. Altermatt (1985). Acta Crystallogr B 41, 244.CrossRefGoogle Scholar
  35. 35.
    C. Gimenez-Saiz, J. R. Galan-Mascaros, S. Triki, E. Coronado, and L. Ouahab (1995). Inorg. Chem. 34, 524.CrossRefGoogle Scholar
  36. 36.
    H. Xu, X. L. Wang, Y. G. Li, E. B. Wang, C. Qin, and Y. L. Si (2007). Inorg. Chem. Commun. 10, (3), 276.CrossRefGoogle Scholar
  37. 37.
    B. L. George, G. Aruldhas, and I. L. Botto (1992). J. Mater. Sci. Lett. 11, 1421.CrossRefGoogle Scholar
  38. 38.
    H. T. Flakus and A. Bryk (1996). J. Mol. Struct. 385, 35.CrossRefGoogle Scholar
  39. 39.
    D. V. Kumar, V. A. Babu, G. R. Rao, and G. C. Pandey (1992). Vib. Spectrosc. 4, 39.CrossRefGoogle Scholar
  40. 40.
    J. Zhao, Y. Song, P. Ma, J. Wang, and J. Niu (2009). J. Solid State Chem. 182, 1798.CrossRefGoogle Scholar
  41. 41.
    J. Tauc, R. Grigorovici, and A. Vancu (1966). Phys. Status Solidi B 15, 627.CrossRefGoogle Scholar
  42. 42.
    O. Kirilenko, F. Girgsdies, R. E. Jentoft, and T. Ressler (2005). Eur. J. Inorg. Chem. 11, 2124.CrossRefGoogle Scholar
  43. 43.
    M. T. Pope (1972). Inorg. Chem. 11, 1973.CrossRefGoogle Scholar
  44. 44.
    B. Li, L. Bi, W. Li, and L. Wu (2008). J. Solid State Chem. 181, 3337.CrossRefGoogle Scholar
  45. 45.
    N. Mizuno, K. Yamaguchi, and K. Kamata (2005). Coord. Chem. Rev. 249, 1944.CrossRefGoogle Scholar
  46. 46.
    R. Neumann and M. Gara (1995). J. Am. Chem. Soc. 117, 5066.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Laboratoire des Matériaux et Cristallochimie (LMC)Institut Supérieur des Sciences Appliquées et Technologie, Université de MonastirMahdiaTunisia
  2. 2.Laboratoire de Chimie de Coordination (LCC)CNRS-Université de ToulouseToulouseFrance

Personalised recommendations