Advertisement

Journal of Cluster Science

, Volume 24, Issue 2, pp 459–470 | Cite as

Time-Dependent Density Functional Theory Study on Hydrogen and Dihydrogen Bonding in Electronically Excited State of 2-Pyridone–Borane–Trimethylamine Cluster

  • Ningning Wei
  • Adel Hamza
  • Ce Hao
  • Zhilong Xiu
  • Jieshan Qiu
Original Paper

Abstract

In this work, the intermolecular dihydrogen and hydrogen bonding interactions in electronically excited states of a 2-pyridone (2PY)–borane–trimethylamine (BTMA) cluster have been theoretically studied using time-dependent density functional theory method. Our computational results show that the S1 state of 2PY–BTMA cluster is a locally excited state, in which only 2PY moiety is electronically excited. The theoretical infrared (IR) spectra of the 2PY–BTMA cluster demonstrate that the N–H stretching vibrational mode is slightly blue-shifted upon the electronic excitation. Moreover, the computed IR spectrum of the 2PY–BTMA cluster exhibits no carbonyl character due to the extension of the C=O bond length in the S1 state. However, the N–H bond is shortened slightly upon photoexcitation. At the same time, the H···H and H···O distances are obviously lengthened in the S1 sate by comparison with those in ground state. In addition, the electron density of the carbonyl oxygen is diminished due to the electronic excitation. Consequently, the proton acceptor ability of carbonyl oxygen is decreased in the electronic excited state. As a result, it is demonstrated that the intermolecular dihydrogen and hydrogen bonds are significantly weakened in the electronically excited state.

Keywords

Hydrogen bonding Dihydrogen bonding Electronically excited state Vibrational modes Red-shift Blue-shift 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21036006) and the Key Laboratory of Industrial Ecology and Environmental Engineering, China Ministry of Education.

References

  1. 1.
    K. L. Han and G. J. Zhao, Hydrogen Bonding and Transfer in the Excited State, (Wiley, Chichester, 2011), Vol. I & II (ISBN: 978-0-470-66677-7).Google Scholar
  2. 2.
    H. Zhang, S. F. Wang, Q. Sun, and S. C. Smith (2009). Phys. Chem. Chem. Phys. 11, 8422.CrossRefGoogle Scholar
  3. 3.
    L. Zhou, G. Zhao, J. Liu, K. Han, Y. Wu, X. Peng, and M. Sun (2007). J. Photochem. Photobiol. A 187, 305–310.CrossRefGoogle Scholar
  4. 4.
    G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 9218.CrossRefGoogle Scholar
  5. 5.
    G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 2469.CrossRefGoogle Scholar
  6. 6.
    Y. F. Liu, Y. G. Yang, K. Jiang, D. H. Shi, and J. F. Sun (2011). Phys. Chem. Chem. Phys. 13, 15299.CrossRefGoogle Scholar
  7. 7.
    J. Chen, G. Zhao, X. Sun, S. Yang, M. Zhang, K. Han, and P. J. Stang (2012). J. Phys. Chem. A 116, 9911–9918.CrossRefGoogle Scholar
  8. 8.
    Y. F. Liu, J. X. Ding, R. Q. Liu, D. H. Shi, and J. F. Sun (2009). J. Photochem. Photobiol. A 201, 203.CrossRefGoogle Scholar
  9. 9.
    D. D. Wang, C. Hao, S. Wang, H. Dong, and J. S. Qiu (2012). J. Mol. Model. 18, 937.CrossRefGoogle Scholar
  10. 10.
    G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han (2007). J. Phys. Chem. B 111, 8940.CrossRefGoogle Scholar
  11. 11.
    G. J. Zhao and K. L. Han (2008). Biophys. J. 94, 38.CrossRefGoogle Scholar
  12. 12.
    G. J. Zhao and K. L. Han (2008). J. Comput. Chem. 29, 2010.CrossRefGoogle Scholar
  13. 13.
    G. J. Zhao and K. L. Han (2008). ChemPhysChem 9, 1842.CrossRefGoogle Scholar
  14. 14.
    G. J. Zhao and K. L. Han (2009). J. Phys. Chem. A 113, 14329.CrossRefGoogle Scholar
  15. 15.
    G. J. Zhao, K. L. Han, and P. J. Stang (2009). J. Chem. Theory Comput. 5, 1955.CrossRefGoogle Scholar
  16. 16.
    G. J. Zhao and K. L. Han (2012). Acc. Chem. Res. 45, 404.CrossRefGoogle Scholar
  17. 17.
    Y. F. Liu, J. X. Ding, D. H. Shi, and J. F. Sun (2008). J. Phys. Chem. A 112, 6244.CrossRefGoogle Scholar
  18. 18.
    Y. F. Liu, J. X. Ding, R. Q. Liu, D. H. Shi, and J. F. Sun (2009). J. Comput. Chem. 30, 2723.CrossRefGoogle Scholar
  19. 19.
    G. J. Zhao, F. Yu, M. Zhang, B. H. Northrop, H. Yang, K. L. Han, and P. J. Stang (2011). J. Phys. Chem. A 115, 6390.CrossRefGoogle Scholar
  20. 20.
    F. Yu, P. Li, G. Li, G. Zhao, T. Chu, and K. Han (2011). J. Am. Chem. Soc. 133, 11030.CrossRefGoogle Scholar
  21. 21.
    G. J. Zhao, B. H. Northrop, K. L. Han, and P. J. Stang (2010). J. Phys. Chem. A 114, 9007.CrossRefGoogle Scholar
  22. 22.
    L. C. Zhou, J. Y. Liu, G. J. Zhao, Y. Shi, X. J. Peng, and K. L. Han (2007). Chem. Phys. 333, 179.CrossRefGoogle Scholar
  23. 23.
    S. Chai, G.-J. Zhao, P. Song, S.-Q. Yang, J.-Y. Liu, and K.-L. Han (2009). Phys. Chem. Chem. Phys. 11, 4385.CrossRefGoogle Scholar
  24. 24.
    Y.-H. Liu, G.-J. Zhao, G.-Y. Li, and K.-L. Han (2010). J. Photochem. Photobiol. A 209, 181.CrossRefGoogle Scholar
  25. 25.
    G. Zhao, R. Chen, M. Sun, G. Li, J. Liu, Y. Gao, K. Han, X. Yang, and L. Sun (2008). Chem. Eur. J. 14, 6935.CrossRefGoogle Scholar
  26. 26.
    R. H. Crabtree, O. Eisenstein, G. Sini, and E. Peris (1998). J. Org. Chem. 567, 7.CrossRefGoogle Scholar
  27. 27.
    G. Zhao and C. Cheng (2012). Amino Acids 43, 557–565.CrossRefGoogle Scholar
  28. 28.
    K. L. Han and G. Z. He (2007). J. Photochem. Photobiol. C 8, 55–66.CrossRefGoogle Scholar
  29. 29.
    J. P. Campbell, J. W. Hwang, V. G. Young, R. B. Von Dreele, C. J. Cramer, and W. L. Gladfelter (1998). J. Am. Chem. Soc. 120, 521.CrossRefGoogle Scholar
  30. 30.
    C. Cheng and G. Zhao (2012). Nanoscale 4, 2301–2305.CrossRefGoogle Scholar
  31. 31.
    C. F. Matta, J. Hernández-Trujillo, T.-H. Tang, and R. F. W. Bader (2003). Chem. Eur. J. 9, 1940.CrossRefGoogle Scholar
  32. 32.
    G. J. Zhao, K. Han, Y. Lei, and Y. Dou (2007). J. Chem. Phys. 127, 094307.CrossRefGoogle Scholar
  33. 33.
    R. H. Crabtree, P. M. Siegbahn, O. Eisenstein, A. Rheingold, and T. F. Koetzle (1996). Acc. Chem. Res. 29, 348.CrossRefGoogle Scholar
  34. 34.
    G. Zhao, B. Northrop, P. Stang, and K. Han (2010). J. Phys. Chem. A 114, 3418–3422.CrossRefGoogle Scholar
  35. 35.
    T. B. Richardson, S. de Gala, R. H. Crabtree, and P. E. M. Siegbhan (1995). J. Am. Chem. Soc. 117, 12875.CrossRefGoogle Scholar
  36. 36.
    G. Zhao and K. Han (2010). Phys. Chem. Chem. Phys. 12, 8914–8918.CrossRefGoogle Scholar
  37. 37.
    L. M. Epstein, E. S. Shubina, E. V. Bakhmutova, L. N. Saitkulova, V. I. Bakhmutov, A. L. Chistyakov, and I. V. Stankevich (1998). Inorg. Chem. 37, 3013.CrossRefGoogle Scholar
  38. 38.
    G. Zhao and K. Han (2009). J. Phys. Chem. A 113, 4788–4794.CrossRefGoogle Scholar
  39. 39.
    S. A. Kulkarni and A. K. Srivastava (1999). J. Phys. Chem. A 103, 2836.CrossRefGoogle Scholar
  40. 40.
    M. Zhang and G. Zhao (2012). ChemSusChem 5, 879–887.CrossRefGoogle Scholar
  41. 41.
    S. C. Gatling and J. E. Jackson (1999). J. Am. Chem. Soc. 121, 8655.CrossRefGoogle Scholar
  42. 42.
    G. N. Patwari, T. Ebata, and N. J. Mikami (2000). J. Chem. Phys. 113, 9885.CrossRefGoogle Scholar
  43. 43.
    G. N. Patwari, T. Ebata, and N. J. Mikami (2001). J. Chem. Phys. 114, 8877.CrossRefGoogle Scholar
  44. 44.
    G. N. Patwari, T. Ebata, and N. J. Mikami (2002). Chem. Phys. 116, 6056.Google Scholar
  45. 45.
    G. N. Patwari, T. Ebata, and N. Mikami (2002). Chem. Phys. 283, 193.CrossRefGoogle Scholar
  46. 46.
    G. N. Patwari (2005). J. Phys. Chem. A 109, 2035.CrossRefGoogle Scholar
  47. 47.
    G. N. Patwari, T. Ebata, and N. Mikami (2001). J. Phys. Chem. A 105, 8642.CrossRefGoogle Scholar
  48. 48.
    G. N. Patwari, A. Fujii, and N. Mikami (2006). J. Chem. Phys. 124, 241103.CrossRefGoogle Scholar
  49. 49.
    G. N. Patwari, A. Fujii, and N. Mikami (2001). J. Phys. Chem. A 105, 10753.CrossRefGoogle Scholar
  50. 50.
    S. L. Gao, W. Wu, and Y. R. Mo (2009). J. Phys. Chem. A 113, 8108.CrossRefGoogle Scholar
  51. 51.
    G.-J. Zhao and K.-L. Han (2007). J. Chem. Phys. 127, 024306.CrossRefGoogle Scholar
  52. 52.
    N.-N. Wei, P. Li, C. Hao, R. Wang, Z.-L. Xiu, J.-W. Chen, and P. Song (2010). J. Photochem. Photobiol. A 210, 77.CrossRefGoogle Scholar
  53. 53.
    N.-N. Wei, C. Hao, Z.-L. Xiu, J.-W. Chen, and J.-S. Qiu (2010). Phys. Chem. Chem. Phys. 12, 9445.CrossRefGoogle Scholar
  54. 54.
    N.-N. Wei, C. Hao, Z.-L. Xiu, J.-W. Chen, and J.-S. Qiu (2010). J. Comput. Chem. 31, 2853–2858.Google Scholar
  55. 55.
    N.-N. Wei, C. Hao, J.-J. Tan, G. Zhao, R. Li, Z.-L. Xiu, and J.-S. Qiu (2011). J. Mol. Model. 17, 1891.CrossRefGoogle Scholar
  56. 56.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  57. 57.
    A. Schäfer, C. Huber, and R. Ahlrichs (1994). J. Chem. Phys. 100, 5829.CrossRefGoogle Scholar
  58. 58.
    N. A. Besley and J. D. Hirst (1999). J. Am. Chem. Soc. 121, 8559.CrossRefGoogle Scholar
  59. 59.
    N. A. Besley and J. D. Hirst (1998). J. Phys. Chem. A 102, 10791.CrossRefGoogle Scholar
  60. 60.
    F. Furchea and R. Ahlrichs (2002). J. Chem. Phys. 117, 7433.CrossRefGoogle Scholar
  61. 61.
    P. Deglmann, F. Furche, and R. Ahlrichs (2002). Chem. Phys. Lett. 362, 511.CrossRefGoogle Scholar
  62. 62.
    P. Deglmann and F. Furche (2002). J. Chem. Phys. 117, 9535.CrossRefGoogle Scholar
  63. 63.
    P. Weis, P. R. Kemper, and M. T. Bowers (1997). J. Phys. Chem. A 101, 2809.CrossRefGoogle Scholar
  64. 64.
    P. Weber and J. R. Reimers (1999). J. Phys. Chem. A 103, 9830.CrossRefGoogle Scholar
  65. 65.
    J. F. Beck and Y. R. Mo (2006). J. Comput. Chem. 28, 455.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Fine Chemicals, Faculty of Chemical, Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
  2. 2.School of Life Science and Biotechnology, Faculty of Chemical, Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
  3. 3.Department of Pharmaceutical Sciences, College of PharmacyUniversity of KentuckyLexingtonUSA

Personalised recommendations