Skip to main content
Log in

Time-Dependent Density Functional Theory Study on Hydrogen and Dihydrogen Bonding in Electronically Excited State of 2-Pyridone–Borane–Trimethylamine Cluster

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, the intermolecular dihydrogen and hydrogen bonding interactions in electronically excited states of a 2-pyridone (2PY)–borane–trimethylamine (BTMA) cluster have been theoretically studied using time-dependent density functional theory method. Our computational results show that the S1 state of 2PY–BTMA cluster is a locally excited state, in which only 2PY moiety is electronically excited. The theoretical infrared (IR) spectra of the 2PY–BTMA cluster demonstrate that the N–H stretching vibrational mode is slightly blue-shifted upon the electronic excitation. Moreover, the computed IR spectrum of the 2PY–BTMA cluster exhibits no carbonyl character due to the extension of the C=O bond length in the S1 state. However, the N–H bond is shortened slightly upon photoexcitation. At the same time, the H···H and H···O distances are obviously lengthened in the S1 sate by comparison with those in ground state. In addition, the electron density of the carbonyl oxygen is diminished due to the electronic excitation. Consequently, the proton acceptor ability of carbonyl oxygen is decreased in the electronic excited state. As a result, it is demonstrated that the intermolecular dihydrogen and hydrogen bonds are significantly weakened in the electronically excited state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. L. Han and G. J. Zhao, Hydrogen Bonding and Transfer in the Excited State, (Wiley, Chichester, 2011), Vol. I & II (ISBN: 978-0-470-66677-7).

  2. H. Zhang, S. F. Wang, Q. Sun, and S. C. Smith (2009). Phys. Chem. Chem. Phys. 11, 8422.

    Article  CAS  Google Scholar 

  3. L. Zhou, G. Zhao, J. Liu, K. Han, Y. Wu, X. Peng, and M. Sun (2007). J. Photochem. Photobiol. A 187, 305–310.

    Article  CAS  Google Scholar 

  4. G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 9218.

    Article  CAS  Google Scholar 

  5. G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 2469.

    Article  CAS  Google Scholar 

  6. Y. F. Liu, Y. G. Yang, K. Jiang, D. H. Shi, and J. F. Sun (2011). Phys. Chem. Chem. Phys. 13, 15299.

    Article  CAS  Google Scholar 

  7. J. Chen, G. Zhao, X. Sun, S. Yang, M. Zhang, K. Han, and P. J. Stang (2012). J. Phys. Chem. A 116, 9911–9918.

    Article  CAS  Google Scholar 

  8. Y. F. Liu, J. X. Ding, R. Q. Liu, D. H. Shi, and J. F. Sun (2009). J. Photochem. Photobiol. A 201, 203.

    Article  CAS  Google Scholar 

  9. D. D. Wang, C. Hao, S. Wang, H. Dong, and J. S. Qiu (2012). J. Mol. Model. 18, 937.

    Article  CAS  Google Scholar 

  10. G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han (2007). J. Phys. Chem. B 111, 8940.

    Article  CAS  Google Scholar 

  11. G. J. Zhao and K. L. Han (2008). Biophys. J. 94, 38.

    Article  CAS  Google Scholar 

  12. G. J. Zhao and K. L. Han (2008). J. Comput. Chem. 29, 2010.

    Article  CAS  Google Scholar 

  13. G. J. Zhao and K. L. Han (2008). ChemPhysChem 9, 1842.

    Article  CAS  Google Scholar 

  14. G. J. Zhao and K. L. Han (2009). J. Phys. Chem. A 113, 14329.

    Article  CAS  Google Scholar 

  15. G. J. Zhao, K. L. Han, and P. J. Stang (2009). J. Chem. Theory Comput. 5, 1955.

    Article  CAS  Google Scholar 

  16. G. J. Zhao and K. L. Han (2012). Acc. Chem. Res. 45, 404.

    Article  CAS  Google Scholar 

  17. Y. F. Liu, J. X. Ding, D. H. Shi, and J. F. Sun (2008). J. Phys. Chem. A 112, 6244.

    Article  CAS  Google Scholar 

  18. Y. F. Liu, J. X. Ding, R. Q. Liu, D. H. Shi, and J. F. Sun (2009). J. Comput. Chem. 30, 2723.

    Article  CAS  Google Scholar 

  19. G. J. Zhao, F. Yu, M. Zhang, B. H. Northrop, H. Yang, K. L. Han, and P. J. Stang (2011). J. Phys. Chem. A 115, 6390.

    Article  CAS  Google Scholar 

  20. F. Yu, P. Li, G. Li, G. Zhao, T. Chu, and K. Han (2011). J. Am. Chem. Soc. 133, 11030.

    Article  CAS  Google Scholar 

  21. G. J. Zhao, B. H. Northrop, K. L. Han, and P. J. Stang (2010). J. Phys. Chem. A 114, 9007.

    Article  CAS  Google Scholar 

  22. L. C. Zhou, J. Y. Liu, G. J. Zhao, Y. Shi, X. J. Peng, and K. L. Han (2007). Chem. Phys. 333, 179.

    Article  CAS  Google Scholar 

  23. S. Chai, G.-J. Zhao, P. Song, S.-Q. Yang, J.-Y. Liu, and K.-L. Han (2009). Phys. Chem. Chem. Phys. 11, 4385.

    Article  CAS  Google Scholar 

  24. Y.-H. Liu, G.-J. Zhao, G.-Y. Li, and K.-L. Han (2010). J. Photochem. Photobiol. A 209, 181.

    Article  CAS  Google Scholar 

  25. G. Zhao, R. Chen, M. Sun, G. Li, J. Liu, Y. Gao, K. Han, X. Yang, and L. Sun (2008). Chem. Eur. J. 14, 6935.

    Article  CAS  Google Scholar 

  26. R. H. Crabtree, O. Eisenstein, G. Sini, and E. Peris (1998). J. Org. Chem. 567, 7.

    Article  CAS  Google Scholar 

  27. G. Zhao and C. Cheng (2012). Amino Acids 43, 557–565.

    Article  CAS  Google Scholar 

  28. K. L. Han and G. Z. He (2007). J. Photochem. Photobiol. C 8, 55–66.

    Article  CAS  Google Scholar 

  29. J. P. Campbell, J. W. Hwang, V. G. Young, R. B. Von Dreele, C. J. Cramer, and W. L. Gladfelter (1998). J. Am. Chem. Soc. 120, 521.

    Article  CAS  Google Scholar 

  30. C. Cheng and G. Zhao (2012). Nanoscale 4, 2301–2305.

    Article  CAS  Google Scholar 

  31. C. F. Matta, J. Hernández-Trujillo, T.-H. Tang, and R. F. W. Bader (2003). Chem. Eur. J. 9, 1940.

    Article  CAS  Google Scholar 

  32. G. J. Zhao, K. Han, Y. Lei, and Y. Dou (2007). J. Chem. Phys. 127, 094307.

    Article  Google Scholar 

  33. R. H. Crabtree, P. M. Siegbahn, O. Eisenstein, A. Rheingold, and T. F. Koetzle (1996). Acc. Chem. Res. 29, 348.

    Article  CAS  Google Scholar 

  34. G. Zhao, B. Northrop, P. Stang, and K. Han (2010). J. Phys. Chem. A 114, 3418–3422.

    Article  CAS  Google Scholar 

  35. T. B. Richardson, S. de Gala, R. H. Crabtree, and P. E. M. Siegbhan (1995). J. Am. Chem. Soc. 117, 12875.

    Article  CAS  Google Scholar 

  36. G. Zhao and K. Han (2010). Phys. Chem. Chem. Phys. 12, 8914–8918.

    Article  CAS  Google Scholar 

  37. L. M. Epstein, E. S. Shubina, E. V. Bakhmutova, L. N. Saitkulova, V. I. Bakhmutov, A. L. Chistyakov, and I. V. Stankevich (1998). Inorg. Chem. 37, 3013.

    Article  CAS  Google Scholar 

  38. G. Zhao and K. Han (2009). J. Phys. Chem. A 113, 4788–4794.

    Article  CAS  Google Scholar 

  39. S. A. Kulkarni and A. K. Srivastava (1999). J. Phys. Chem. A 103, 2836.

    Article  CAS  Google Scholar 

  40. M. Zhang and G. Zhao (2012). ChemSusChem 5, 879–887.

    Article  CAS  Google Scholar 

  41. S. C. Gatling and J. E. Jackson (1999). J. Am. Chem. Soc. 121, 8655.

    Article  CAS  Google Scholar 

  42. G. N. Patwari, T. Ebata, and N. J. Mikami (2000). J. Chem. Phys. 113, 9885.

    Article  Google Scholar 

  43. G. N. Patwari, T. Ebata, and N. J. Mikami (2001). J. Chem. Phys. 114, 8877.

    Article  Google Scholar 

  44. G. N. Patwari, T. Ebata, and N. J. Mikami (2002). Chem. Phys. 116, 6056.

    Google Scholar 

  45. G. N. Patwari, T. Ebata, and N. Mikami (2002). Chem. Phys. 283, 193.

    Article  CAS  Google Scholar 

  46. G. N. Patwari (2005). J. Phys. Chem. A 109, 2035.

    Article  CAS  Google Scholar 

  47. G. N. Patwari, T. Ebata, and N. Mikami (2001). J. Phys. Chem. A 105, 8642.

    Article  CAS  Google Scholar 

  48. G. N. Patwari, A. Fujii, and N. Mikami (2006). J. Chem. Phys. 124, 241103.

    Article  Google Scholar 

  49. G. N. Patwari, A. Fujii, and N. Mikami (2001). J. Phys. Chem. A 105, 10753.

    Article  CAS  Google Scholar 

  50. S. L. Gao, W. Wu, and Y. R. Mo (2009). J. Phys. Chem. A 113, 8108.

    Article  CAS  Google Scholar 

  51. G.-J. Zhao and K.-L. Han (2007). J. Chem. Phys. 127, 024306.

    Article  Google Scholar 

  52. N.-N. Wei, P. Li, C. Hao, R. Wang, Z.-L. Xiu, J.-W. Chen, and P. Song (2010). J. Photochem. Photobiol. A 210, 77.

    Article  CAS  Google Scholar 

  53. N.-N. Wei, C. Hao, Z.-L. Xiu, J.-W. Chen, and J.-S. Qiu (2010). Phys. Chem. Chem. Phys. 12, 9445.

    Article  CAS  Google Scholar 

  54. N.-N. Wei, C. Hao, Z.-L. Xiu, J.-W. Chen, and J.-S. Qiu (2010). J. Comput. Chem. 31, 2853–2858.

    CAS  Google Scholar 

  55. N.-N. Wei, C. Hao, J.-J. Tan, G. Zhao, R. Li, Z.-L. Xiu, and J.-S. Qiu (2011). J. Mol. Model. 17, 1891.

    Article  CAS  Google Scholar 

  56. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  57. A. Schäfer, C. Huber, and R. Ahlrichs (1994). J. Chem. Phys. 100, 5829.

    Article  Google Scholar 

  58. N. A. Besley and J. D. Hirst (1999). J. Am. Chem. Soc. 121, 8559.

    Article  CAS  Google Scholar 

  59. N. A. Besley and J. D. Hirst (1998). J. Phys. Chem. A 102, 10791.

    Article  CAS  Google Scholar 

  60. F. Furchea and R. Ahlrichs (2002). J. Chem. Phys. 117, 7433.

    Article  Google Scholar 

  61. P. Deglmann, F. Furche, and R. Ahlrichs (2002). Chem. Phys. Lett. 362, 511.

    Article  CAS  Google Scholar 

  62. P. Deglmann and F. Furche (2002). J. Chem. Phys. 117, 9535.

    Article  CAS  Google Scholar 

  63. P. Weis, P. R. Kemper, and M. T. Bowers (1997). J. Phys. Chem. A 101, 2809.

    Article  CAS  Google Scholar 

  64. P. Weber and J. R. Reimers (1999). J. Phys. Chem. A 103, 9830.

    Article  CAS  Google Scholar 

  65. J. F. Beck and Y. R. Mo (2006). J. Comput. Chem. 28, 455.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21036006) and the Key Laboratory of Industrial Ecology and Environmental Engineering, China Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ningning Wei or Ce Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, N., Hamza, A., Hao, C. et al. Time-Dependent Density Functional Theory Study on Hydrogen and Dihydrogen Bonding in Electronically Excited State of 2-Pyridone–Borane–Trimethylamine Cluster. J Clust Sci 24, 459–470 (2013). https://doi.org/10.1007/s10876-013-0572-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0572-5

Keywords

Navigation