Journal of Cluster Science

, Volume 24, Issue 3, pp 749–756 | Cite as

Covalent Functionalization of Zn12O12 Nanocluster with Thiophene

  • Mohammad T. Baei
Original Paper


Covalent functionalization of a ZnO nanocluster with thiophene molecule was studied by means of density functional theory calculations. The obtained results show that the molecule is physically adsorbed on the surface of nanocluster with adsorption energies in the range of −0.33 to −0.42 eV. In this study, 2η-C4H4S–Zn12O12 cluster is the most stable adsorption among all thiophene adsorption configurations. Accordingly, HOMO–LUMO energy gap of the nano-cluster is changed about 0.24 to 0.72 % using the DFT calculations. The values of charge transfer shows that π-back bonding exists for 2η and 5η bonding modes. Present results might be helpful to provide an effective way to modify the Zn12O12 properties for further applications such as generation of the new hybrid compounds.


Zinc oxide nanocluster Adsorption Functional group Hydrodesulfurization DFT 


  1. 1.
    W. W. C. Quigley, H. D. Yamamoto, P. A. Aegerter, G. J. Simpson, and M. E. Bussell (1996). Langmuir 12, 1500.CrossRefGoogle Scholar
  2. 2.
    X. Zheng, Y. Zhang, S. Huang, H. Liu, P. Wangd, and H. Tian (2012). Comput. Theor. Chem. 979, 64.CrossRefGoogle Scholar
  3. 3.
    A. Mishra, C.-Q. Ma, and P. Bauerle (2009). Chem. Rev. 109, 1141.CrossRefGoogle Scholar
  4. 4.
    G. R. Gu and T. Ito (2011). Appl. Surf. Sci. 257, 2455.CrossRefGoogle Scholar
  5. 5.
    X. Qiu, J. Y. Howe, H. M. Meyer, E. Tuncer, and M. P. Parantharman (2011). Appl. Surf. Sci. 257, 4057.Google Scholar
  6. 6.
    Y. L. Wu, A. I. Y. Tok, F. Y. C. Boey, X. T. Zeng, and X. H. Zhang (2007). Appl. Surf. Sci. 253, 5473.CrossRefGoogle Scholar
  7. 7.
    J. D. Prades, A. Cirera, and J. R. Morante (2009). Sens. Actuators B 142, 179.CrossRefGoogle Scholar
  8. 8.
    I. I. Novochinskii, C. S. Song, X. L. Ma, X. S. Liu, L. Shore, J. Lampert, and R. J. Farrauto (2004). Energy Fuels 18, 576.CrossRefGoogle Scholar
  9. 9.
    H. Y. Yang, R. Sothen, D. R. Cahela, and B. J. Tatarchuk (2008). Ind. Eng. Chem. Res. 47, 10064.CrossRefGoogle Scholar
  10. 10.
    A. Ahmadi Peyghan, M. T. Baei, P. Torabi, and S. Hashemian, doi:  10.1080/10426507.2012.737879.
  11. 11.
    A. F. Nogueira, B. S. Lomba, M. A. Soto-Ovideo, C. R. Duarte Correia, P. Corio, C. A. Furtado, and I. A. Hummelgen (2007). J. Phys. Chem. C 111, 18431.CrossRefGoogle Scholar
  12. 12.
    X. Xu, J. Yin, H. Li, Y. Zhou, J. Li, J. Pei, and K. Wu (2009). J. Phys. Chem. C 113, 8844.CrossRefGoogle Scholar
  13. 13.
    P. A. Denis and F. Iribarne (2010). J. Mol. Struct. THEOCHEM 957, 114–119.CrossRefGoogle Scholar
  14. 14.
    S. Xu, M. Zhang, Y. Zhao, B. Chen, J. Zhang, and C. C. Sun (2006). Chem. Phys. Lett. 423, 212.CrossRefGoogle Scholar
  15. 15.
    A. D. Becke (1988). Physi. Rev. A 38, 3098.CrossRefGoogle Scholar
  16. 16.
    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.CrossRefGoogle Scholar
  17. 17.
    B. Miehlich, A. Savin, H. Stoll, and H. Preuss (1989). Chem. Phys. Lett. 157, 200.CrossRefGoogle Scholar
  18. 18.
    T. H. Dunning Jr and P. J. Hay in H. F. Schaefer III (ed.), Modern Theoretical Chemistry, vol. 3 (Plenum, New York, 1976), p. 1.Google Scholar
  19. 19.
    W. R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284.CrossRefGoogle Scholar
  20. 20.
    A. Ahmadi Peyghan, M.T. Baei, and S. Hashemian. J. Clust. Sci. doi:  10.1007/s10876-013-0553-8.
  21. 21.
    M. Schmidt, et al. (1993). J. Comput. Chem. 14, 1347.CrossRefGoogle Scholar
  22. 22.
    S. S. Li Semiconductor Physical Electronics, 2nd ed (Springer, New York, 2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of ChemistryAzadshahr Branch, Islamic Azad UniversityAzadshahrIran

Personalised recommendations