Skip to main content
Log in

Simple Hydrothermal Synthesis of Nickel Hydroxide Flower-Like Nanostructures

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

α-Ni(OH)2 flower-like nanostructures were successfully synthesized through one-step hydrothermal method with nickel acetate tetrahydrate, ethylene-1,2-diamine (en), hexamethylenetetramine (HMT) and cetyltrimethylammonium bromide (CTAB) as morphology-directing agents. Optimum conditions to obtain high yield and pure phase α-Ni(OH)2 were identified by varying experimental parameters such as: en, HMT and CTAB concentration and reaction temperature. The products were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared and thermogravimetric analysis. These results indicated that the α-nickel hydroxide contains water molecules and anions. The hierarchical NiO nanostructures were obtained by the as-synthesized α-Ni(OH)2 nanostructures annealed at 300 °C for 4 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Xu, L. Wang, D. Zou, and T. Ying (2008). Mater. Lett. 62, 3181.

    Article  CAS  Google Scholar 

  2. Y. Shao, J. Sun, and L. Gao (2009). J. Phys. Chem. C 113, 6566.

    Article  CAS  Google Scholar 

  3. K. Xu and W. Ding (2008). Mater. Lett. 62, 4437.

    Article  CAS  Google Scholar 

  4. C. Coudun and J. F. Hochepied (2005). J. Phys. Chem. B 109, 6069.

    Article  CAS  Google Scholar 

  5. X. Wang, H. Luo, P. V. Parkhutik, A. C. Millan, and E. Matveeva (2003). J. Power Sources 115, 153.

    Article  Google Scholar 

  6. J. J. Braconniera, C. Delmas, and P. Hagenmuller (1982). Mater. Res. Bull. 17, 993.

    Article  Google Scholar 

  7. B. Liu, X. Y. Wang, H. T. Yuan, Y. S. Zhang, D. Y. Song, and Z. X. Zhou (1999). J. Appl. Electrochem. 29, 855.

    Article  CAS  Google Scholar 

  8. I. Zhitomirsky (2004). J. Appl. Electrochem. 34, 235.

    Article  CAS  Google Scholar 

  9. W. Y. Li, S. Y. Zhang, and J. Chen (2005). J. Phys. Chem. B 109, 14025.

    Article  CAS  Google Scholar 

  10. R. Acharya, T. Subbaiah, S. Anand, and R. P. Das (2003). Mater. Chem. Phys. 81, 45.

    Article  CAS  Google Scholar 

  11. A. Delahaye-Vidal and M. Figiarz (1987). J. Appl. Electrochem. 17, 589.

    Article  CAS  Google Scholar 

  12. M. Dixit, G. N. Subbanna, and P. V. Kamath (1996). J. Mater. Chem. 6, 1429.

    Article  CAS  Google Scholar 

  13. Y. L. Zhao, J. M. Wang, H. Chen, T. Pan, J. Q. Zhang, and C. N. Cao (2004). Int. J. Hydrogen Energy 29, 889.

    Article  CAS  Google Scholar 

  14. F. Portemer, A. Delahaye-Vidal, and M. Figiarz (1992). J. Electrochem. Soc. 139, 671.

    Article  CAS  Google Scholar 

  15. M. Akine, N. Jongen, J. Lemaitre, and H. Hofmann (1998). J. Eur. Ceram. Soc. 18, 1559.

    Article  Google Scholar 

  16. M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. Itoh, M. Okada, and T. Mouri (1998). J. Power Sources 74, 46.

    Article  CAS  Google Scholar 

  17. B. Sheela, H. Gomathi, and G. P. Rao (1995). J. Electroanal. Chem. 394, 267.

    Article  Google Scholar 

  18. C. B. Alcock, B. Z. Li, J. W. Fergus, and L. Wang (1992). Solid State Ionics 53, 39.

    Article  Google Scholar 

  19. A. C. Felici, F. Lama, M. Piacentini, T. Papa, D. Debowska, and A. Kisiel (1996). J. Appl. Phys. 80, 6925.

    Article  CAS  Google Scholar 

  20. D. Adler and J. Feinleib (1970). Phys. Rev. B 2, 3112.

    Article  Google Scholar 

  21. X. Wang, J. M. Song, L. S. Gao, J. Y. Jin, H. G. Zheng, and Z. D. Zhang (2005). Nanotechnology 16, 37.

    Article  CAS  Google Scholar 

  22. F. Mohandes and M. Salavati-Niasari (2013). Ultrason. Sonochem. 20, 354.

    Article  CAS  Google Scholar 

  23. F. Soofivand, F. Mohandes, and M. Salavati-Niasari (2012). Micro Nano Lett. 7, 283.

    Article  CAS  Google Scholar 

  24. M. Jafari, M. Salavati-Niasari, and F. Mohandes (2012). J. Inorg. Organomet. Polym.. doi:10.1007/s10904-012-9784-7.

    Google Scholar 

  25. S. M. Hosseinpour-Mashkani, F. Mohandes, M. Salavati-Niasari, and K. Venkateswara-Rao (2012). Mater. Res. Bull. 47, 3148.

    Article  CAS  Google Scholar 

  26. F. Davar, F. Mohandes, and M. Salavati-Niasari (2010). Polyhedron 29, 3132.

    Article  CAS  Google Scholar 

  27. N. Bouropoulos, G. C. Psarras, N. Moustakas, A. Chrissanthopoulos, and S. Baskoutas (2008). Phys. Status Solidi A 205, 2033.

    Article  CAS  Google Scholar 

  28. F. Mohandes, F. Davar, and M. Salavati-Niasari (2010). J. Magn. Magn. Mater. 322, 872.

    Article  CAS  Google Scholar 

  29. M. Salavati-Niasari, F. Mohandes, F. Davar, and K. Saberyan (2009). Appl. Sur. Sci. 256, 1476.

    Article  CAS  Google Scholar 

  30. S. Baskoutas, P. Giabouranis, S. N. Yannopoulos, V. Dracopoulos, L. Toth, A. Chrissanthopoulos, and N. Bouropoulos (2007). Thin Solid Films 515, 8461.

    Article  CAS  Google Scholar 

  31. D. Yang, R. Wang, M. He, J. Zhang, and Z. Liu (2005). J. Phys. Chem. B 109, 7654.

    Article  CAS  Google Scholar 

  32. M. Jayalakshmi, N. Venugopal, B. R. Reddy, and M. M. Rao (2005). J. Power Source 150, 272.

    Article  CAS  Google Scholar 

  33. Z. H. Liang, Y. J. Zhu, and X. L. Hu (2004). J. Phys. Chem. B 108, 3488.

    Article  CAS  Google Scholar 

  34. W. K. Hu, X. P. Gao, D. Noreus, T. Burchardt, and N. Nakstad (2006). J. Power Source 160, 704.

    Article  CAS  Google Scholar 

  35. H. Zhang, H. Liu, X. Cao, S. Li, and C. Sun (2003). Mater. Chem. Phys. 79, 37.

    Article  CAS  Google Scholar 

  36. E. Esmaeili, M. Salavati-Niasari, F. Mohandes, F. Davar, and H. Seyghalkar (2011). Chem. Eng. J. 170, 278.

    Article  CAS  Google Scholar 

  37. M. Salavati-Niasari, F. Davar, and Z. Fereshteh (2010). J. Alloys Compd. 494, 410.

    Article  CAS  Google Scholar 

  38. M. Salavati-Niasari, N. Mir, and F. Davar (2010). J. Alloys Compd. 493, 163.

    Article  CAS  Google Scholar 

  39. N. V. Kosova, E. T. Devyatkina, and V. V. Kaichev (2007). J. Power Source 174, 735.

    Article  CAS  Google Scholar 

  40. L. Xu, Y.-S. Ding, C.-H. Chen, L. Zhao, C. Rimkus, R. Joesten, and S. L. Suib (2008). Chem. Mater. 20, 308.

    Article  CAS  Google Scholar 

  41. L.-X. Yang, Y. J. Zhu, H. Tong, Z. H. Liang, L. Li, and L. Zhang (2007). J. Solid State Chem. 180, 2095.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the council of Iran National Science Foundation and University of Kashan for supporting this work by Grant No (159271/51).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salavati-Niasari, M., Seyghalkar, H., Amiri, O. et al. Simple Hydrothermal Synthesis of Nickel Hydroxide Flower-Like Nanostructures. J Clust Sci 24, 365–376 (2013). https://doi.org/10.1007/s10876-013-0558-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0558-3

Keywords

Navigation