Advertisement

Journal of Cluster Science

, Volume 24, Issue 1, pp 365–376 | Cite as

Simple Hydrothermal Synthesis of Nickel Hydroxide Flower-Like Nanostructures

  • Masoud Salavati-Niasari
  • Hamideh Seyghalkar
  • Omid Amiri
  • Fatemeh Davar
Original Paper

Abstract

α-Ni(OH)2 flower-like nanostructures were successfully synthesized through one-step hydrothermal method with nickel acetate tetrahydrate, ethylene-1,2-diamine (en), hexamethylenetetramine (HMT) and cetyltrimethylammonium bromide (CTAB) as morphology-directing agents. Optimum conditions to obtain high yield and pure phase α-Ni(OH)2 were identified by varying experimental parameters such as: en, HMT and CTAB concentration and reaction temperature. The products were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared and thermogravimetric analysis. These results indicated that the α-nickel hydroxide contains water molecules and anions. The hierarchical NiO nanostructures were obtained by the as-synthesized α-Ni(OH)2 nanostructures annealed at 300 °C for 4 h.

Keywords

Nickel hydroxide Nickel oxide Chemical synthesis Flower-like nanostructure Hydrothermal 

Notes

Acknowledgments

Authors are grateful to the council of Iran National Science Foundation and University of Kashan for supporting this work by Grant No (159271/51).

References

  1. 1.
    C. Xu, L. Wang, D. Zou, and T. Ying (2008). Mater. Lett. 62, 3181.CrossRefGoogle Scholar
  2. 2.
    Y. Shao, J. Sun, and L. Gao (2009). J. Phys. Chem. C 113, 6566.CrossRefGoogle Scholar
  3. 3.
    K. Xu and W. Ding (2008). Mater. Lett. 62, 4437.CrossRefGoogle Scholar
  4. 4.
    C. Coudun and J. F. Hochepied (2005). J. Phys. Chem. B 109, 6069.CrossRefGoogle Scholar
  5. 5.
    X. Wang, H. Luo, P. V. Parkhutik, A. C. Millan, and E. Matveeva (2003). J. Power Sources 115, 153.CrossRefGoogle Scholar
  6. 6.
    J. J. Braconniera, C. Delmas, and P. Hagenmuller (1982). Mater. Res. Bull. 17, 993.CrossRefGoogle Scholar
  7. 7.
    B. Liu, X. Y. Wang, H. T. Yuan, Y. S. Zhang, D. Y. Song, and Z. X. Zhou (1999). J. Appl. Electrochem. 29, 855.CrossRefGoogle Scholar
  8. 8.
    I. Zhitomirsky (2004). J. Appl. Electrochem. 34, 235.CrossRefGoogle Scholar
  9. 9.
    W. Y. Li, S. Y. Zhang, and J. Chen (2005). J. Phys. Chem. B 109, 14025.CrossRefGoogle Scholar
  10. 10.
    R. Acharya, T. Subbaiah, S. Anand, and R. P. Das (2003). Mater. Chem. Phys. 81, 45.CrossRefGoogle Scholar
  11. 11.
    A. Delahaye-Vidal and M. Figiarz (1987). J. Appl. Electrochem. 17, 589.CrossRefGoogle Scholar
  12. 12.
    M. Dixit, G. N. Subbanna, and P. V. Kamath (1996). J. Mater. Chem. 6, 1429.CrossRefGoogle Scholar
  13. 13.
    Y. L. Zhao, J. M. Wang, H. Chen, T. Pan, J. Q. Zhang, and C. N. Cao (2004). Int. J. Hydrogen Energy 29, 889.CrossRefGoogle Scholar
  14. 14.
    F. Portemer, A. Delahaye-Vidal, and M. Figiarz (1992). J. Electrochem. Soc. 139, 671.CrossRefGoogle Scholar
  15. 15.
    M. Akine, N. Jongen, J. Lemaitre, and H. Hofmann (1998). J. Eur. Ceram. Soc. 18, 1559.CrossRefGoogle Scholar
  16. 16.
    M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. Itoh, M. Okada, and T. Mouri (1998). J. Power Sources 74, 46.CrossRefGoogle Scholar
  17. 17.
    B. Sheela, H. Gomathi, and G. P. Rao (1995). J. Electroanal. Chem. 394, 267.CrossRefGoogle Scholar
  18. 18.
    C. B. Alcock, B. Z. Li, J. W. Fergus, and L. Wang (1992). Solid State Ionics 53, 39.CrossRefGoogle Scholar
  19. 19.
    A. C. Felici, F. Lama, M. Piacentini, T. Papa, D. Debowska, and A. Kisiel (1996). J. Appl. Phys. 80, 6925.CrossRefGoogle Scholar
  20. 20.
    D. Adler and J. Feinleib (1970). Phys. Rev. B 2, 3112.CrossRefGoogle Scholar
  21. 21.
    X. Wang, J. M. Song, L. S. Gao, J. Y. Jin, H. G. Zheng, and Z. D. Zhang (2005). Nanotechnology 16, 37.CrossRefGoogle Scholar
  22. 22.
    F. Mohandes and M. Salavati-Niasari (2013). Ultrason. Sonochem. 20, 354.CrossRefGoogle Scholar
  23. 23.
    F. Soofivand, F. Mohandes, and M. Salavati-Niasari (2012). Micro Nano Lett. 7, 283.CrossRefGoogle Scholar
  24. 24.
    M. Jafari, M. Salavati-Niasari, and F. Mohandes (2012). J. Inorg. Organomet. Polym.. doi: 10.1007/s10904-012-9784-7.Google Scholar
  25. 25.
    S. M. Hosseinpour-Mashkani, F. Mohandes, M. Salavati-Niasari, and K. Venkateswara-Rao (2012). Mater. Res. Bull. 47, 3148.CrossRefGoogle Scholar
  26. 26.
    F. Davar, F. Mohandes, and M. Salavati-Niasari (2010). Polyhedron 29, 3132.CrossRefGoogle Scholar
  27. 27.
    N. Bouropoulos, G. C. Psarras, N. Moustakas, A. Chrissanthopoulos, and S. Baskoutas (2008). Phys. Status Solidi A 205, 2033.CrossRefGoogle Scholar
  28. 28.
    F. Mohandes, F. Davar, and M. Salavati-Niasari (2010). J. Magn. Magn. Mater. 322, 872.CrossRefGoogle Scholar
  29. 29.
    M. Salavati-Niasari, F. Mohandes, F. Davar, and K. Saberyan (2009). Appl. Sur. Sci. 256, 1476.CrossRefGoogle Scholar
  30. 30.
    S. Baskoutas, P. Giabouranis, S. N. Yannopoulos, V. Dracopoulos, L. Toth, A. Chrissanthopoulos, and N. Bouropoulos (2007). Thin Solid Films 515, 8461.CrossRefGoogle Scholar
  31. 31.
    D. Yang, R. Wang, M. He, J. Zhang, and Z. Liu (2005). J. Phys. Chem. B 109, 7654.CrossRefGoogle Scholar
  32. 32.
    M. Jayalakshmi, N. Venugopal, B. R. Reddy, and M. M. Rao (2005). J. Power Source 150, 272.CrossRefGoogle Scholar
  33. 33.
    Z. H. Liang, Y. J. Zhu, and X. L. Hu (2004). J. Phys. Chem. B 108, 3488.CrossRefGoogle Scholar
  34. 34.
    W. K. Hu, X. P. Gao, D. Noreus, T. Burchardt, and N. Nakstad (2006). J. Power Source 160, 704.CrossRefGoogle Scholar
  35. 35.
    H. Zhang, H. Liu, X. Cao, S. Li, and C. Sun (2003). Mater. Chem. Phys. 79, 37.CrossRefGoogle Scholar
  36. 36.
    E. Esmaeili, M. Salavati-Niasari, F. Mohandes, F. Davar, and H. Seyghalkar (2011). Chem. Eng. J. 170, 278.CrossRefGoogle Scholar
  37. 37.
    M. Salavati-Niasari, F. Davar, and Z. Fereshteh (2010). J. Alloys Compd. 494, 410.CrossRefGoogle Scholar
  38. 38.
    M. Salavati-Niasari, N. Mir, and F. Davar (2010). J. Alloys Compd. 493, 163.CrossRefGoogle Scholar
  39. 39.
    N. V. Kosova, E. T. Devyatkina, and V. V. Kaichev (2007). J. Power Source 174, 735.CrossRefGoogle Scholar
  40. 40.
    L. Xu, Y.-S. Ding, C.-H. Chen, L. Zhao, C. Rimkus, R. Joesten, and S. L. Suib (2008). Chem. Mater. 20, 308.CrossRefGoogle Scholar
  41. 41.
    L.-X. Yang, Y. J. Zhu, H. Tong, Z. H. Liang, L. Li, and L. Zhang (2007). J. Solid State Chem. 180, 2095.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Masoud Salavati-Niasari
    • 1
    • 2
  • Hamideh Seyghalkar
    • 2
  • Omid Amiri
    • 3
  • Fatemeh Davar
    • 4
  1. 1.Institute of Nano Science and Nano Technology, University of KashanKashanIslamic Republic of Iran
  2. 2.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of KashanKashanIslamic Republic of Iran
  3. 3.Young Researchers Club, Kashan BranchIslamic Azad UniversityKashanIran
  4. 4.Department of ChemistryIsfahan University of TechnologyIsfahanIran

Personalised recommendations