Journal of Cluster Science

, Volume 24, Issue 1, pp 165–176 | Cite as

Density Functional Study of Structural and Electronic Properties of AlP n (2 ≤ n ≤ 12) Clusters

Original Paper


Low-lying equilibrium geometric structures of AlP n (n = 2–12) clusters obtained by an all-electron linear combination of atomic orbital approach, within spin-polarized density functional theory, are reported. The binding energy, dissociation energy, and stability of these clusters are studied within the local spin density approximation (LSDA) and the three-parameter hybrid generalized gradient approximation (GGA) due to Becke–Lee–Yang–Parr (B3LYP). Ionization potentials, electron affinities, hardness, and static dipole polarizabilities are calculated for the ground-state structures within the GGA. It is observed that symmetric structures with the aluminum atom occupying the peripheral position are lowest-energy geometries. And the Al impurity in the most stable structures of AlP n clusters can be looked upon as a substitutional impurity in pure P n+1 clusters or capping Al atom in the different peripheral positions of pure P n clusters. Generalized gradient approximation extends bond lengths as compared to the LSDA lengths. The odd–even oscillations in the dissociation energy, the second differences in energy, the HOMO–LUMO gaps, the ionization potential, the electron affinity, and the hardness are more pronounced within the GGA. The stability analysis based on the energies clearly shows the AlP5 and AlP7 clusters to be endowed with special stabilities.


Aluminum phosphide DFT theory Stability 



This work was financially supported by the National Natural Science Foundation of China (Grant No. 20603021), Youth Foundation of Shanxi (2007021009) and the Youth Academic Leader of Shanxi.


  1. 1.
    R. B. Huang, H. D. Li, Z. Y. Lin, and S. H. Yang (1995). J. Phys. Chem. 99, 1418.CrossRefGoogle Scholar
  2. 2.
    M. Haser, U. Schneide, and R. Ahlrichs (1992). J. Am. Chem. Soc. 114, 9551.CrossRefGoogle Scholar
  3. 3.
    R. O. Jones, G. Alntefor, S. Hunsicker, and P. Pieperhoff (1995). J. Chem. Phys. 103, 9549.CrossRefGoogle Scholar
  4. 4.
    M. Brack (1993). Rev. Mod. Phys. 65, 677.CrossRefGoogle Scholar
  5. 5.
    R. O. Jones and D. Hohl (1990). J. Chem. Phys. 92, 6710.CrossRefGoogle Scholar
  6. 6.
    H. Gomez, T. R. Taylor, and D. M. Neumark (2001). J. Phys. Chem. A 105, 6886.CrossRefGoogle Scholar
  7. 7.
    E. F. Archibong, R. M. Gregorius, and S. A. Alexander (2000). Chem. Phys. Lett. 321, 253.CrossRefGoogle Scholar
  8. 8.
    E. F. Archibong, S. K. Goh, and D. S. Marynick (2002). Chem. Phys. Lett. 361, 214.CrossRefGoogle Scholar
  9. 9.
    P. Y. Feng and K. Balasubramanian (2000). Chem. Phys. Lett. 318, 417.CrossRefGoogle Scholar
  10. 10.
    P. Y. Feng and K. Balasubramanian (1999). Chem. Phys. Lett. 301, 458.CrossRefGoogle Scholar
  11. 11.
    M. A. Al-Laham, G. W. Trucks, and K. Raghavachari (1992). J. Chem. Phys. 96, 1137.CrossRefGoogle Scholar
  12. 12.
    Z. Y. Liu, G. W. Wang, and R. B. Huang (1995). Int. J. Mass Spectrom. 4, 201.CrossRefGoogle Scholar
  13. 13.
    D. Porezag, M. R. Pederson, and A. Y. Liu (1999). Phys. Rev. B 60, 14132.CrossRefGoogle Scholar
  14. 14.
    R. G. Parr and W. Yang Density functional theory of atoms and molecules (Oxford, New York, 1989).Google Scholar
  15. 15.
    R. O. Jones and O. Gunnarsson (1989). Rev. Mod. Phys. 61, 689.CrossRefGoogle Scholar
  16. 16.
    M. M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and J. A. Pole (1982). J. Chem. Phys. 77, 3654.CrossRefGoogle Scholar
  17. 17.
    P. C. Hariharan and J. A. Pople (1973). Theor. Chim. Acta 28, 213.CrossRefGoogle Scholar
  18. 18.
    S. H. Vosko, L. Wilk, and M. Nusair (1980). Can. J. Phys. 58, 1200.CrossRefGoogle Scholar
  19. 19.
    D. M. Ceperley and B. J. Alder (1980). Phys. Rev. Lett. 45, 566.CrossRefGoogle Scholar
  20. 20.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. GAUSSIAN 98, Revision A.6 (Gaussian Inc., Pittsburgh, 1998).Google Scholar
  21. 21.
    A. D. Becke (1988). Phys. Rev. A 38, 3098.CrossRefGoogle Scholar
  22. 22.
    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.CrossRefGoogle Scholar
  23. 23.
    L. Guo, H. S. Wu, and Z. H. Jin (2004). J. Mol. Struct. (THEOCHEM) 677, 59.CrossRefGoogle Scholar
  24. 24.
    H. K. Quek, Y. P. Feng, and C. K. Ong (1997). Z. Phys. D 42, 309.CrossRefGoogle Scholar
  25. 25.
    R. G. Pearson Chemical hardness: applications from molecules to solids (Wiley-VCH, Weinheim, 1997).CrossRefGoogle Scholar
  26. 26.
    R. G. Parr and R. G. Pearson (1983). J. Am. Chem. Soc. 105, 7512.CrossRefGoogle Scholar
  27. 27.
    P. Jaque and A. Toro-Labbe (2002). J. Chem. Phys. 117, 3208.CrossRefGoogle Scholar
  28. 28.
    R. G. Parr and P. K. Chattaraj (1991). J. Am. Chem. Soc. 113, 1854.CrossRefGoogle Scholar
  29. 29.
    P. K. Chattaraj and S. Sengupta (1996). J. Phys. Chem. 100, 16126.CrossRefGoogle Scholar
  30. 30.
    P. K. Chattaraj and A. Poddar (1998). J. Phys. Chem. A 102, 9944.CrossRefGoogle Scholar
  31. 31.
    P. K. Chattaraj, P. Fuentealba, P. Jaque, and A. Toro-Labbe (1999). J. Phys. Chem. A 103, 9307.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of Chemistry and Material ScienceShanxi Normal UniversityLinfenChina

Personalised recommendations