Journal of Cluster Science

, Volume 24, Issue 1, pp 133–143 | Cite as

Synthesis and Characterization of Nanocrystalline MoSi2 by Mechanical Alloying and Heat Treating

Original Paper


In order to synthesize nanocrystalline MoSi2, pure molybdenum and silicone powders were milled using an attritor mill with the molar ratio of Mo:Si being equal to 1:2. Mechanically alloyed (MAed) powders were heated in an atmosphere controlled furnace at various temperatures and holding times. The nanopowder characteristics were evaluated by field emission scanning electron microscopy, X-ray diffraction technique, and differential thermal analysis. The obtained results were compared for all prepared samples. The results did not confirm the presence of any related intermetallics after MA. However, Mo5Si3 was formed during heating at 900 °C. An increase in temperature caused the enhancement of the volume fraction of Mo5Si3 and formation of MoSi2. Further heating at 1,100 °C caused the enhancement of the volume fraction of MoSi2, while that of Mo5Si3 was decreased, as during heating at 1,100 °C for 7 h the volume fraction of Mo5Si3 was negligible.


MoSi2 Synthesis Mechanical alloying Heating 



The authors would like to appreciate the financial support of department of materials engineering of Malek Ashtar University of Technology (Shahin Shahr, Isfahan, Iran).


  1. 1.
    R. Darolia, J. Lewandowski, C. Liu, P. Martin, D. Miracle, and M. Nathal Structural Intermetallics (The Minerals Metals and Materials Society, USA, 1993).Google Scholar
  2. 2.
    M. Yamaguchi, H. Inui, and K. Ito (2000). High-temperature structural intermetallics. Acta Mater. 48, 307–322.CrossRefGoogle Scholar
  3. 3.
    F. Chu, M. Lei, S. Maloy, J. Petrovic, and T. Mitchell (1996). Elastic properties of C40 transition metal disilicides. Acta Mater. 44, 3035–3048.CrossRefGoogle Scholar
  4. 4.
    H. Okamoto Desk Handbook: Phase Diagrams for Binary Alloys, 2nd ed (ASM International, USA, 2010).Google Scholar
  5. 5.
    A. Vasudevan and J. Petrovic (1992). A comparative overview of molybdenum disilicide composites. Mater. Sci. Eng. A 155, 1–17.CrossRefGoogle Scholar
  6. 6.
    Z. Yao, J. Stiglich, and T. Sudarshan (1999). Molybdenum silicide based materials and their properties. J. Mater. Eng. Perform. 8, 291–304.CrossRefGoogle Scholar
  7. 7.
    E. Courtright (1999). A comparison of MoSi2 matrix composites with other silicon-base composite systems. Mater. Sci. Eng. A 261, 53–63.CrossRefGoogle Scholar
  8. 8.
    D. Mason and D. Van Aken (1995). On the creep of directionally solidified MoSi2–Mo5Si3 eutectics. Acta Metall. Mater. 43, 1201–1210.CrossRefGoogle Scholar
  9. 9.
    D. Mason and D. Van Aken (1993). The effect of microstructural scale on hardness of MoSi2–Mo5Si3 eutectics. Scripta Metall. Mater. 28, 185–189.CrossRefGoogle Scholar
  10. 10.
    H. Zhang, S. Tang, J. Yan, and C. Zhang (2008). Fabrication and wear characteristics of MoSi2 matrix composites reinforced by La2O3 and Mo5Si3. Int. J. Refract. Met. H. 26, 115–119.CrossRefGoogle Scholar
  11. 11.
    P. Peralta, R. Dickerson, J. Michael, K. McClellan, F. Chu, and T. Mitchell (1999). Residual thermal stresses in MoSi2–Mo5Si3 in situ composites. Mater. Sci. Eng. A 261, 261–269.CrossRefGoogle Scholar
  12. 12.
    J. Schneibel and J. Sekhar (2003). Microstructure and properties of MoSi2–MoB and MoSi2–Mo5Si3 molybdenum silicides. Mater. Sci. Eng. A 340, 204–211.CrossRefGoogle Scholar
  13. 13.
    R. Gibala, A. Ghosh, D. Van Aken, D. Srolovitz, A. Basu, H. Chang, D. Mason, and W. Yang (1992). Mechanical behavior and interface design of MoSi2-based alloys and composites. Mater. Sci. Eng. A 155, 147–158.CrossRefGoogle Scholar
  14. 14.
    Y. Jeng and E. Lavernia (1994). Processing of molybdenum disilicide. J. Mater. Sci. 29, 2557–2571.CrossRefGoogle Scholar
  15. 15.
    S. Deevi (1992). Diffusional reaction in the combustion synthesis of MoSi2. Mater. Sci. Eng. A 149, 241–251.CrossRefGoogle Scholar
  16. 16.
    C. Yeh and W. Chen (2007). Combustion synthesis of MoSi2 and MoSi2–Mo5Si3 composites. J. Alloy. Compd. 438, 165–170.CrossRefGoogle Scholar
  17. 17.
    J. Subrahmanyam (1994). Combustion synthesis of MoSi2–Mo5Si3 composites. J. Mater. Res. 9, 2620–2626.CrossRefGoogle Scholar
  18. 18.
    J. Yan, H. Xu, H. Zhang, and S. Tang (2009). MoSi2 oxidation resistance coatings for Mo5Si3/MoSi2 composites. Rare Met. 28, 418–422.CrossRefGoogle Scholar
  19. 19.
    T. Schubert, A. Bohm, B. Kieback, M. Achtermann, and R. Scholl (2002). Effects of high energy milling on densification behaviour of Mo–Si powder mixture during pressureless sintering. Intermetallics 10, 873–878.CrossRefGoogle Scholar
  20. 20.
    A. G. Heron and G. B. Schaffer (2003). Mechanical alloying of MoSi2 with ternary alloying elements. Part1: experimental. Mater. Sci. Eng. A 325, 105–111.Google Scholar
  21. 21.
    M. Zakeri, R. Yazdani, M. H. Enayati, and M. R. Rahimpour (2005). Synthesis of nanocrystalline MoSi2 by mechanical alloying. J. Alloy. Compd. 403, 258–261.CrossRefGoogle Scholar
  22. 22.
    H. Zhang and X. Liu (2001). Analysis of milling energy in synthesis and formation mechanism of molybdenum disilicide by mechanical alloying. Int. J. Refract. Met. H. 19, 203–208.CrossRefGoogle Scholar
  23. 23.
    L. Liu and K. Cui (2003). Mechanical alloying of refractory metal–silicon systems. J. Mater. Process. Tech. 138, 394–398.CrossRefGoogle Scholar
  24. 24.
    M. Sannia, R. Orru, J. E. Garay, G. Cao, and Z. A. Munir (2003). Effect of phase transformation during high energy milling of field activated synthesis of dense MoSi2. J. Mater. Sci. Eng. A 345, 270–277.CrossRefGoogle Scholar
  25. 25.
    H. Saage and M. Kruger (2009). Ductilization of Mo–Si solid solutions manufactured by powder metallurgy. Acta Mater. 57, 3895–3901.CrossRefGoogle Scholar
  26. 26.
    L. Liu, F. Padella, W. Guo, and M. Maginit (1995). Solid state alloying reactions include by mechanical in metal–silicon systems. Acta Metall. Mater. 43, 3755–3761.CrossRefGoogle Scholar
  27. 27.
    P. Feng, A. Farid, Xi Wang, I. S. Humail, and X. Qu (2008). Mechanically activated reactive synthesis of refractory molybdenum and tungsten silicides. Int. J. Refract. Met. H. 26, 173–178.CrossRefGoogle Scholar
  28. 28.
    C. Suryanarayana (2001). Mechanical alloying and milling. Mater. Sci. 46, 1–184.Google Scholar
  29. 29.
    E. Gaffett and N. Malhouroux-Gaffet (1994). Nanocrystalline MoSi2 phase formation induced by mechanically activated annealing. J. Alloy. Compd. 205, 27–261.CrossRefGoogle Scholar
  30. 30.
    S. Zamani, H. R. Bakhsheshi-Rad, A. Shokuhfar, M. R. Vaezi, M. R. Abdul Kadir, and M. R. Mohammad Shafiee (2012). Synthesis and characterisation of MoSi2–Mo5Si3 nanocomposite by mechanical alloying and heat treatment. Int. J. Refract. Met. H. 31, 234–236.CrossRefGoogle Scholar
  31. 31.
    P. Kang and Z. Yin (2004). Formation mechanism and nanocrystalline phase transformation of molybdenum disilicide by mechanical alloying. Nanotechnology 15, 851–855.CrossRefGoogle Scholar
  32. 32.
    S. R. Bakhshi, M. Salehi, H. Edris, and G. H. Borhani (2008). Structural evaluation of Mo–Si–B multiphase alloy during mechanical alloying and heat treatment. Powder Metall. 51, 119–124.CrossRefGoogle Scholar
  33. 33.
    B. Cullity and S. Stock Elements of X-ray Diffraction (Addison-Wesley, USA, 1956).Google Scholar
  34. 34.
    P. Kang and Z. Yin (2003). Phase formation during annealing as-milled powders of molybdenum disilicide. Mater. Lett. 57, 4412–4417.CrossRefGoogle Scholar
  35. 35.
    D. L. Zhang (1995). Phase formation during mechanical alloying of Mo and Si powders. J. Mater. Sci. Lett. 14, 1508–1511.CrossRefGoogle Scholar
  36. 36.
    M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar (2008). Contorollable synthesis of nanocrystalline CdS with different morphologies. Chem. Eng. J. 145, 346–350.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Materials EngineeringMalek Ashtar University of TechnologyShahin ShahrIran

Personalised recommendations