Journal of Cluster Science

, Volume 24, Issue 1, pp 349–363 | Cite as

Hydrothermal Synthesis of Bismuth Sulfide (Bi2S3) Nanorods: Bismuth(III) Monosalicylate Precursor in the Presence of Thioglycolic Acid

  • Masoud Salavati-Niasari
  • Zeynab Behfard
  • Omid Amiri
  • Elahe Khosravifard
  • S. Mostafa Hosseinpour-Mashkani
Original Paper


Well-segregated bismuth sulfide (Bi2S3) nanorods with a high order of crystallinity have been successfully prepared from bismuth(III) monosalicylate [BiO(C7H5O3)] by a simple hydrothermal reaction in H2O at 180 °C. Bismuth(III) monosalicylate and thioglycolic acid act as the starting materials. The products were characterized by powder X-ray diffraction, Ultraviolet–Visible (UV–Vis) spectroscopy, transmission electron microscopy photoluminescence spectroscopy, and Fourier transform infrared spectra. The powder X-ray diffraction pattern shows the product belongs to the orthorhombic Bi2S3 phase. Their UV–Vis spectrum shows the absorbance at 328 nm, with its direct energy band gap of 2.6 eV. Bismuth salicylate, which is known to be a complex, may play a critical role as a precursor and a template for the growth of linear bismuth sulfide nanorods. Finally the influences of the reaction conditions are discussed and a possible mechanism for the formation of Bi2S3 nanorods is proposed.


Nanostructures Semiconductors Bismuth sulfide Nanorods Hydrothermal method 



Authors are grateful to council of University of Kashan for supporting this work by Grant No. (159271/35), Iran National Science Foundation and IST, Jawaharlal Nehru Technological University Hyderabad and TEM section, SAIF, NEHU, Shillong, Meghalaya, India, for providing financial support to undertake this work.


  1. 1.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan (2003). Adv. Mater. 15, 353.CrossRefGoogle Scholar
  2. 2.
    Y. W. Jun, J. S. Choi, and J. W. Cheon (2006). Chem. Int. Ed. 45, 3414.CrossRefGoogle Scholar
  3. 3.
    F. Mohandes, F. Davar, and M. Salavati-Niasari (2010). J. Magn. Magn. Mater. 322, 872.CrossRefGoogle Scholar
  4. 4.
    X. Cao, L. Li, and Y. Xie (2004). J. Colloid Interface Sci. 273, 175.CrossRefGoogle Scholar
  5. 5.
    F. Davar, M. Salavati-Niasari, and Z. Fereshteh (2010). J. Alloys Compd. 496, 638.CrossRefGoogle Scholar
  6. 6.
    M. Salavati-Niasari, F. Davar, and Z. Fereshteh (2010). J. Alloys Compd. 494, 410.CrossRefGoogle Scholar
  7. 7.
    M. Cinke, J. Li, C. W. Bauschlicher Jr., A. Ricca, and M. Meyyappan (2003). Chem. Phys. Lett. 376, 761.CrossRefGoogle Scholar
  8. 8.
    S. Y. Yeo, H. J. Lee, and S. H. Jeong (2003). J. Mater. Sci. 38, 2143.CrossRefGoogle Scholar
  9. 9.
    B. Miller and A. Heller (1976). Nature (London) 262, 680.CrossRefGoogle Scholar
  10. 10.
    J. M. Schoijet (1979). Sol. Energy Mater. 1, 43.CrossRefGoogle Scholar
  11. 11.
    M. E. Rincòn, R. Suàrez, and P. K. Nair (1996). J. Phys. Chem. Solids 57, 1947.CrossRefGoogle Scholar
  12. 12.
    P. Boudjouk, M. P. Remngton Jr., D. G. Grier, B. R. Jarabek, and G. J. McCarthy (1998). Inorg. Chem. 37, 3538.CrossRefGoogle Scholar
  13. 13.
    R. Suarea, P. K. Nair, and P. V. Kamat (1998). Langmuir 14, 3236.CrossRefGoogle Scholar
  14. 14.
    M. Salavati-Niasari, F. Davar, and Z. Fereshteh (2009). Chem. Eng. J. 146, 498.CrossRefGoogle Scholar
  15. 15.
    H. Zhang, Y. Ji, X. Ma, J. Xu, and D. Yang (2003). Nanotechnology 14, 974.CrossRefGoogle Scholar
  16. 16.
    J. Lu, Q. F. Han, X. J. Yang, L. D. Lu, and X. Wang (2007). Mater. Lett. 61, 2883.CrossRefGoogle Scholar
  17. 17.
    Q. Lu, F. Gao, and S. Komarneni (2004). J. Am. Chem. Soc. 126, 54.CrossRefGoogle Scholar
  18. 18.
    P. S. Sonawane and L. A. Patil (2007). Mater. Chem. Phys. 105, 157.CrossRefGoogle Scholar
  19. 19.
    H. Wang, J. J. Zhu, J. M. Zhu, and H. Y. Chen (2002). J. Phys. Chem. B 106, 3848.CrossRefGoogle Scholar
  20. 20.
    L. S. Li, N. J. Sun, Y. Y. Huang, Y. Qin, N. N. Zhao, G. N. Gao, M. X. Li, H. H. Zhou, and L. M. Qi (2008). Adv. Funct. Mater. 18, 1194.CrossRefGoogle Scholar
  21. 21.
    W. T. Yao and S. H. Yu (2007). Int. J. Nanotechnol. 4, 129.CrossRefGoogle Scholar
  22. 22.
    M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar (2009). J. Alloys Compd. 475, 782.CrossRefGoogle Scholar
  23. 23.
    M. Salavati-Niasari, F. Davar, and M. R. Loghman-Estarki (2009). J. Alloys Compd. 481, 776.CrossRefGoogle Scholar
  24. 24.
    M. Salavati-Niasari, F. Davar, and M. R. Loghman-Estarki (2010). J. Alloys Compd. 494, 199.CrossRefGoogle Scholar
  25. 25.
    M. Salavati-Niasari, D. Ghanbari, and F. Davar (2010). J. Alloys Compd. 492, 570.CrossRefGoogle Scholar
  26. 26.
    M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar (2008). Chem. Eng. J. 145, 346.CrossRefGoogle Scholar
  27. 27.
    M. Salavati-Niasari, M. Bazarganipour, and F. Davar (2010). J. Alloys Compd. 489, 530.CrossRefGoogle Scholar
  28. 28.
    M. Salavati-Niasari, M. Bazarganipour, and F. Davar (2010). J. Alloys Compd. 499, 121.CrossRefGoogle Scholar
  29. 29.
    Y. Yu, C. H. Jin, R. H. Wang, Q. Chen, and L. M. Peng (2005). J. Phys. Chem. B 109, 18772.CrossRefGoogle Scholar
  30. 30.
    X. Li, J. Cui, L. Zhang, W. Yu, F. Guo, and Y. Qian (2005). Nanotechnology 16, 1771.CrossRefGoogle Scholar
  31. 31.
    G. Xie, Z. P. Qiao, M. H. Zeng, X. M. Chen, and S. L. Gao (2004). Cryst. Growth Des. 4, 513.CrossRefGoogle Scholar
  32. 32.
    L. Tian, H. Y. Tan, and J. J. Vittal (2008). Cryst. Growth Des. 8, 734–738.CrossRefGoogle Scholar
  33. 33.
    G. Q. Zhu and P. Liu (2009). Cryst. Res. Technol. 44, 713–720.CrossRefGoogle Scholar
  34. 34.
    D. Zhan, X. Zhou, Y. Zhang, J. Hong, and K. Zhang (2005). Thermochim. Acta 428, 47–50.CrossRefGoogle Scholar
  35. 35.
    R. Chen, M. H. So, C.-M. Che, and H. Sun (2005). J. Mater. Chem. 15, 4540.CrossRefGoogle Scholar
  36. 36.
    D. Fan, P. J. Thomas, and P. O’Brien (2008). Chem. Phys. Lett. 465, 110.CrossRefGoogle Scholar
  37. 37.
    V. K. Jain (2005). Bull. Mater. Sci. 28, 313.CrossRefGoogle Scholar
  38. 38.
    M. Salavati-Niasari, N. Mir, and F. Davar (2009). J. Phys. Chem. Solids 70, 847.CrossRefGoogle Scholar
  39. 39.
    E. V. Timakova, T. A. Udalova, and Yu. M. Yukhin (2009). Russ. J. Inorg. Chem. 54, 873.CrossRefGoogle Scholar
  40. 40.
    P. R. Tel’zhenskaya and E. M. Shvarts (1977). Koord Khim 3, 1279.Google Scholar
  41. 41.
    Y. Y. Kharitonov and Z. K. Tuierbakhova (1989). Dokl. Akad. Nauk SSSR 307, 1423.Google Scholar
  42. 42.
    W. Lewandowski, M. Kalinowska, and H. Lewandowska (2005). J. Inorg. Biochem. 99, 1407.CrossRefGoogle Scholar
  43. 43.
    R. J. Betsch and N. W. B. White (1977). Spectrochim. Acta 34A, 505.Google Scholar
  44. 44.
    E. C. Yost, M. Tejedor-Tejedor, and M. A. Anderson (1990). Environ. Sci. Technol. 24, 822.CrossRefGoogle Scholar
  45. 45.
    D. Arivuoli, F. D. Gnanam, and P. Ramasamy (1988). J. Mater. Sci. Lett. 7, 711.CrossRefGoogle Scholar
  46. 46.
    J. Cryst, E. M. Conwell, L. Seigle, and C. W. Spencer (1957). J. Phys. Chem. Solids 2, 240.CrossRefGoogle Scholar
  47. 47.
    M. Salavati-Niasari, D. Ghanbari, and F. Davar (2009). J. Alloys Compd. 488, 442.CrossRefGoogle Scholar
  48. 48.
    W. Li, S. N. Katore, and C. H. Bhosale (2000). Mater. Chem. Phys. 64, 166.CrossRefGoogle Scholar
  49. 49.
    W. Li (2008). Mater. Lett. 62, 243.CrossRefGoogle Scholar
  50. 50.
    J. Zhan, X. Yang, D. Wang, S. Li, Y. Xie, Y. Xia, and Y. T. Qian (2000). Adv. Mater. 12, 1348.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Masoud Salavati-Niasari
    • 1
    • 2
  • Zeynab Behfard
    • 2
  • Omid Amiri
    • 5
  • Elahe Khosravifard
    • 3
  • S. Mostafa Hosseinpour-Mashkani
    • 4
  1. 1.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran
  2. 2.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of KashanKashanIslamic Republic of Iran
  3. 3.Department of Engineering, Faculty of EngineeringUniversity of KashanKashanIslamic Republic of Iran
  4. 4.Center for Nanoscience and Technology, ISTJawaharlal Nehru Technological University HyderabadHyderabadIndia
  5. 5.Young Researchers Club, kashan BranchIslamic Azad UniversityKashanIslamic Republic of Iran

Personalised recommendations