Advertisement

Journal of Cluster Science

, Volume 23, Issue 4, pp 1119–1132 | Cite as

Effect of Gallium Doping on Electronic and Structural Properties (6,0) Zigzag Silicon Carbide Nanotube as a p-Semiconductor

  • Mohammad T. Baei
  • Ali Ahmadi Peyghan
  • Masoumeh Moghimi
  • Saeedeh Hashemian
Original Paper

Abstract

Density functional theory (DFT) calculations were performed to investigate the electronic and structural properties of pristine and Ga-doped (6,0) zigzag silicon carbide nanotubes (SiCNTs) as a p-semiconductor at the B3LYP/6-31G* level of theory in order to evaluate the influence of Ga doping on (6,0) zigzag SiCNTs. We extended the DFT calculation to predict the electronic structure properties of Ga-doped silicon carbide nanotubes, which are very important for production of solid-state devices and other applications. To this aim, pristine and Ga-doped SiCNT structures in two models (GaSi and GaC) were optimized and structural properties, the isotropic (CSI) and anisotropic (CSA) chemical shielding parameters for the sites of various 29Si and 13C atoms, and quantum molecular descriptors were calculated in the optimized structures. The optimized structures, NMR parameters, and the electronic energies for the GaSi and GaC of the (6,0) zigzag SiCNT models show that the GaSi model is a better p-semiconductor from GaC model in production of solid-state devices.

Graphical Abstract

Keywords

Silicon carbide nanotube Semiconductor Electronic structure Quantum molecular descriptors DFT 

References

  1. 1.
    R. F. Davis, J. W. Palmour, and J. A. Edmond (1992). Diamond Relat. Mater. 1, 109.CrossRefGoogle Scholar
  2. 2.
    N. E. Korsunska, I. Tarasov, V. Kushnirenko, and S. Ostapenko (2004). Semicon. Sci. Technol. 19, 833.CrossRefGoogle Scholar
  3. 3.
    X.-H. Sun, C.-P. Li, W.-K. Wong, N.-B. Wong, C.-S. Lee, S.-T. Lee, and B.-T. Teo (2002). J. Am. Chem. Soc. 124, 14464.CrossRefGoogle Scholar
  4. 4.
    M. Zhao, Y. Xia, R. Q. Zhang, and S. T. Lee (2005). J. Chem. Phys. 122, 21470.Google Scholar
  5. 5.
    Y. Miyamoto and B. D. Yu (2002). Appl. Phys. Lett. 80, 586.CrossRefGoogle Scholar
  6. 6.
    K. M. Alam and A. K. Ray (2009). J. Nano Part. Res. 11, 1405.CrossRefGoogle Scholar
  7. 7.
    A. Wu, Q. Song, L. Yang, and Q. Hao (2011). Comput. Theor. Chem. doi: 10.1016/j.comptc.2011.09.013.
  8. 8.
    K. M. Alam and A. K. Ray (2007). Nanotechnology 18, 495706.CrossRefGoogle Scholar
  9. 9.
    I. J. Wu and G. Y. Guo (2007). Phys. Rev. B 76, 035343.CrossRefGoogle Scholar
  10. 10.
    S. Choudhary and S. Qureshi (2011). Phys. Lett. A 375, 3382.CrossRefGoogle Scholar
  11. 11.
    Y. T. Yang, R. X. Ding, and J. X. Song (2011). Phys. B 406, 216.CrossRefGoogle Scholar
  12. 12.
    A. Gali (2006). Phys. Rev. B 73, 245415.CrossRefGoogle Scholar
  13. 13.
    F. A. Bovey Nuclear Magnetic Resonance Spectroscopy (Academic Press, San Diego, 1988).Google Scholar
  14. 14.
    M. T. Baei, S. Z. Sayyed Alang, A. V. Moradi, and P. Torabi (2012). J. Mol. Model. 18, 881.CrossRefGoogle Scholar
  15. 15.
    M. T. Baei, A. V. Moradi, P. Torabi, and M. Moghimi (2011). Monatsh. Chem. 142, 783.CrossRefGoogle Scholar
  16. 16.
    M. T. Baei, A. V. Moradi, M. Moghimi, and P. Torabi (2011). Comput. Theor. Chem. 967, 179.CrossRefGoogle Scholar
  17. 17.
    M. T. Baei, A. V. Moradi, P. Torabi, and M. Moghimi (2011). Monatsh. Chem. 142, 1097.CrossRefGoogle Scholar
  18. 18.
    P. K. Chattaraj, U. Sarkar, and D. R. Roy (2006). Chem. Rev. 106, 2065.CrossRefGoogle Scholar
  19. 19.
    K. K. Hazarika, N. C. Baruah, and R. C. Deka (2009). Struct. Chem. 20, 1079.CrossRefGoogle Scholar
  20. 20.
    R. G. Parr, L. Szentpaly, and S. Liu (1999). J. Am. Chem. Soc. 121, 1922.CrossRefGoogle Scholar
  21. 21.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheese-man, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople Gaussian 03, Revision B03 (Gaussian Inc., Pittsburgh, 2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mohammad T. Baei
    • 1
  • Ali Ahmadi Peyghan
    • 2
  • Masoumeh Moghimi
    • 3
  • Saeedeh Hashemian
    • 4
  1. 1.Department of Chemistry, Azadshahr BranchIslamic Azad UniversityAzadshahrIran
  2. 2.Young Researchers Club, Islamshahr BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Chemistry, Gonbad Kavoos BranchIslamic Azad UniversityGonbad KavoosIran
  4. 4.Department of Chemistry, Yazd BranchIslamic Azad UniversityYazdIran

Personalised recommendations