Journal of Cluster Science

, Volume 23, Issue 4, pp 1081–1095 | Cite as

Polymeric Matrix Nanocomposites: Influence of Cadmium Sulfide Nanostructure on the Thermal Degradation of Poly(Vinyl Alcohol) and Cellulose Acetate

  • Davood Ghanbari
  • Masoud Salavati-Niasari
  • Mohammad Sabet
Original Paper


In this work cadmium sulfide-thioglycolic acid (CdS-Organic) nanostructures were added to the poly(vinyl alcohol) and cellulose acetate polymeric matrixes. The influence of CdS-Organic (CdS-Org) content on the thermal degradation of polymeric matrixes was studied using thermogravimetric analysis. Thermal decomposition of the nanocomposites shifted towards higher temperature in the presence of the CdS-Org nanostructures. Nanostructures were characterized by scanning electron microscopy, atomic force microscopy, Ultraviolet–Visible and Fourier transform infrared spectroscopy.


Cellulose acetate Poly(vinyl alcohol) Nanocomposite Flame retardant 



The authors are grateful to University of Kashan for supporting this work by Grant No (159271/17).


  1. 1.
    D. Ghanbari and M. Salavati-Niasari (2012). High Temp. Mater. Proc. 31, (2), 133.Google Scholar
  2. 2.
    A. B. Morgan and C. A. Wilkie Flame Retardant Polymer Nanocomposite (Wiley, Hoboken, 2007).CrossRefGoogle Scholar
  3. 3.
    K. Faghihi, M. Soleimani, M. Shabanian, and A. S. Abootalebi (2011). High Temp. Mater. Proc. 30, 217.Google Scholar
  4. 4.
    M. Yousefi, F. Gholamian, D. Ghanbari, and M. Salavati-Niasari (2011). Polyhedron 30, 1055.CrossRefGoogle Scholar
  5. 5.
    M. Yousefi, M. Salavati-Niasari, F. Gholamian, D. Ghanbari, and A. Aminifazl (2011). Inorg Chim Acta. 371, 1.CrossRefGoogle Scholar
  6. 6.
    C. Tsioptsias, k. G. Sakellariou, I. Tsivintzelis, L. Papadopoulou, and C. Panayiotou (2010). Carbohyd Polym. 81, 925.CrossRefGoogle Scholar
  7. 7.
    R. B. Romero (2009). CAP. Leite, MdC. Gonçalves. Polymer. 50, 161.CrossRefGoogle Scholar
  8. 8.
    F. El-Tantawy, K. M. Abdel-Kader, F. Kaneko, and Y. K. Sung (2004). Euro. Poly. J. 40, 415.CrossRefGoogle Scholar
  9. 9.
    H. Wang, P. Fang, Z. Chen, and S. Wang (2007). Appl. Surf. Sci. 253, 8495.CrossRefGoogle Scholar
  10. 10.
    J. Kuljanin, M. I. Comor, V. Djokovic, and J. M. Nedeljkovic (2006). Mat Chem Phys. 95, 67.CrossRefGoogle Scholar
  11. 11.
    M. Salavati-Niasari, D. Ghanbari, F. Davar, and J. Alloy (2009). Compound 488, 442.CrossRefGoogle Scholar
  12. 12.
    D. Ghanbari, M. Salavati-Niasari, F. Davar, High Temp. Mater. Proc. doi: 10.1515/htmp-2012-0152.
  13. 13.
    M. Salavati-Niasari, D. Ghanbari, and M. R. Loghman-Estarki (2012). Polyhedron 35, 149.CrossRefGoogle Scholar
  14. 14.
    M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar (2009). Inorg. Chim. Acta. 362, 3677.CrossRefGoogle Scholar
  15. 15.
    D. Ghanbari, M. Salavati-Niasari, High Temp. Mater. Proc. doi: 10.1515/htmp-2012-0018.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Davood Ghanbari
    • 1
  • Masoud Salavati-Niasari
    • 2
  • Mohammad Sabet
    • 1
  1. 1.Young Researchers Club, Arak BranchIslamic Azad UniversityArakIran
  2. 2.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran

Personalised recommendations