Journal of Cluster Science

, Volume 23, Issue 3, pp 913–928 | Cite as

Structural Diversity Within the Series of 68-Electron M4L n E2 (L = 2-Electron Ligand; M = Fe, Ru, Os, Co; E = CH, N, P, NR, PR, S) Organometallic Clusters: A Theoretical Investigation

  • Nabila Guechtouli
  • Abdou Boucekkine
  • Jean-François Halet
  • Samia Kahlal
  • Hacène Meghezzi
  • Jean-Yves Saillard
Original Paper

Abstract

Four different skeletal structural arrangements with very different connectivities are known for 6-vertex/68-electron of M4E2 core (M = transition metal; E = main-group atom or ligand). DFT calculations on a large number of title model compounds allow to rationalize the preferences between these structural shapes with respect to the nature of the metal and main-group elements constituting the cluster cage. In particular, the electronegativity of M and the “size” (first-row vs. second-row element) of E play an important role in the stability preference of a particular isomer. For several compounds, although only one type of structure is known, other low-energy isomeric forms are also likely to exist. Moreover, two structural types, so far unreported, are predicted to be stable enough for being synthesized.

Keywords

Organometallic clusters Mixed metal/main group Skeletal isomerism DFT 

Notes

Acknowledgments

We thank the French and Algerian governments for the research grant CMEP 07 MDU 700. Computing facilities were partly provided by GENCI-IDRIS and GENCI-CINES (Grant No. 2010-80649). JYS thanks the Institut universitaire de France for support.

Supplementary material

10876_2012_492_MOESM1_ESM.doc (507 kb)
Supplementary material 1 (DOC 507 kb)

References

  1. 1.
    N. V. Sidgwick and H. E. Powell (1940). Proc. Roy. Soc. A 176, 153.CrossRefGoogle Scholar
  2. 2.
    K. Wade in B. F. G. Jonhson (ed.), Transition Metal Clusters (Wiley, Chichester, 1980), p. 193.Google Scholar
  3. 3.
    D. M. P. Mingos and D. J. Wales Introduction to Cluster Chemistry (Prentice-Hall, Englewood Cliffs, 1990).Google Scholar
  4. 4.
    D. J. Wales in R. B. King (ed.), Encyclopedia of Inorganic Chemistry, vol. 3, 2nd ed (Wiley, Chichester, 2005), p. 1506.Google Scholar
  5. 5.
    T. P. Fehlner, J.-F. Halet, and J.-Y. Saillard Molecular Clusters. A Bridge to Solid State Chemistry (Cambridge University Press, Cambridge, 2007).CrossRefGoogle Scholar
  6. 6.
    R. E. Williams (1976). Proc. Inorg. Chem. Radiochem. 18, 67.Google Scholar
  7. 7.
    K. Wade (1976). Adv. Inorg. Chem. Radiochem. 18, 1.CrossRefGoogle Scholar
  8. 8.
    R. W. Rudolph (1976). Acc. Chem. Res. 9, 446.CrossRefGoogle Scholar
  9. 9.
    R. Hoffmann (1982). Angew. Chem. Int. Ed. Engl. 21, 711.CrossRefGoogle Scholar
  10. 10.
    T. A. Albright, J. K. Burdett, and M.-H. Whangbo Orbital Interactions in Chemistry (Wiley, New York, 1985).Google Scholar
  11. 11.
    A. J. Stone (1980). Mol. Phys. 41, 1339.CrossRefGoogle Scholar
  12. 12.
    A. J. Stone and M. J. Alderton (1982). Inorg. Chem. 21, 2297.CrossRefGoogle Scholar
  13. 13.
    R. Gautier, J.-F. Halet, and J.-Y. Saillard in E. Solomon, R. A. Scott, and R. B. King (eds.), Computational Inorganic and Bioinorganic Chemistry (Wiley, Chichester, 2009), p. 433.Google Scholar
  14. 14.
    N. S. Lokbani-Azzouz, A. Boucekkine, J.-F. Halet, and J.-Y. Saillard (2003). J. Clust. Sci. 14, 49.CrossRefGoogle Scholar
  15. 15.
    N. Guechtouli, G. Lucas, A. Boucekkine, J.-F. Halet, S. Kahlal, N.-S. Lokbani-Azzouz, H. Meghezzi, and J.-Y. Saillard (2005). C. R. Chimie 8, 1863.CrossRefGoogle Scholar
  16. 16.
    J.-F. Halet, R. Hoffmann, and J.-Y. Saillard (1985). Inorg. Chem. 24, 1695.CrossRefGoogle Scholar
  17. 17.
    S. Kahlal, J.-F. Halet, and J.-Y. Saillard (1991). New J. Chem. 15, 843.Google Scholar
  18. 18.
    R. C. Ryan and L. F. Dahl (1975). J. Am. Chem. Soc. 97, 6905.Google Scholar
  19. 19.
    W. C. Hsuan and L. F. Dahl (1975). Cryst. Struct. Comm. 4, 583.Google Scholar
  20. 20.
    S. P. Foster, K. M. Mackay and Brian K. Nicholson (1982). Chem. Commun. 1156.Google Scholar
  21. 21.
    H. Vahrenkampf, E. J. Wucherer, and D. Wolters (1983). Chem. Ber. 116, 1219.CrossRefGoogle Scholar
  22. 22.
    A. A. Arif, A. H. Cowley, M. Pakulski, M. B. Hursthouse, and A. Karauloz (1985). Organometallics 4, 2227.CrossRefGoogle Scholar
  23. 23.
    T. Jaeger, S. Aime, and H. Vahrenkampf (1986). Organometallics 5, 245.CrossRefGoogle Scholar
  24. 24.
    M. G. Richmond and J. K. Kochi (1986). Inorg. Chem. 25, 1334.CrossRefGoogle Scholar
  25. 25.
    M. G. Richmond and J. K. Kochi (1987). Organometallics 6, 254.CrossRefGoogle Scholar
  26. 26.
    M.-J. Don, M. G. Richmond, W. H. Watson, and A. Nagl (1989). Acta Cryst. C45, 736.Google Scholar
  27. 27.
    C. L. Schulman, M. G. Richmond, W. H. Watson, and A. Nagl (1989). J. Organomet. Chem. 368, 367.CrossRefGoogle Scholar
  28. 28.
    M.-J. Don, M. G. Richmond, W. H. Watson, and A. Nagl (1989). J. Organomet. Chem. 372, 417.CrossRefGoogle Scholar
  29. 29.
    M.-J. Don, M. G. Richmond, W. H. Watson, and A. Nagl (1991). Acta Cryst. C 47, 93.CrossRefGoogle Scholar
  30. 30.
    S. Kahlal, K. A. Udachin, L. Scoles, A. J. Carty, and J.-Y. Saillard (2000). Organometallics 19, 2251.CrossRefGoogle Scholar
  31. 31.
    R. D. Adams and L.-W. Yang (1983). J. Am. Chem. Soc. 105, 235.CrossRefGoogle Scholar
  32. 32.
    R. D. Adams, I. T. Horváth, and K. Natarajan (1984). Organometallics 3, 1540.CrossRefGoogle Scholar
  33. 33.
    R. D. Adams and I. T. Horváth (1984). Inorg. Chem. 23, 4718.CrossRefGoogle Scholar
  34. 34.
    J.-S. Song, S.-H. Han, S. T. Nguyen, G. L. Geoffroy, and A. L. Rheingold (1990). Organometallics 9, 2386.CrossRefGoogle Scholar
  35. 35.
    E. Sappa, A. M. Manotti-Lanfredi, G. Predieri, A. Tiripicchio, and A. J. Carty (1985). J. Organomet. Chem. 288, 365.CrossRefGoogle Scholar
  36. 36.
    A. Sironi, G. Gervasio, and E. Sappa (1994). J. Clust. Sci. 5, 535.CrossRefGoogle Scholar
  37. 37.
    H. Bantel, B. Hansert, K. A. Powell, M. Tasi, and H. Vahrenkamp (1989). Angew. Chem. Int. Ed. Engl. 28, 8.CrossRefGoogle Scholar
  38. 38.
    S. G. Bott, J. C. Wang, and M. G. Richmond (1999). J. Chem. Cryst. 29, 587.CrossRefGoogle Scholar
  39. 39.
    E. J. Baerends, D. E. Ellis, and P. Ros (1973). Chem. Phys. 2, 41.CrossRefGoogle Scholar
  40. 40.
    E. J. Baerends and P. Ros (1978). Int. J. Quant. Chem. S12, 169.Google Scholar
  41. 41.
    P. M. Boerrigter, G. te Velde, and E. J. Baerends (1988). Int. J. Quant. Chem. 33, 87.CrossRefGoogle Scholar
  42. 42.
    G. te Velde and E. J. Baerends (1992). J. Comput. Phys. 99, 84.CrossRefGoogle Scholar
  43. 43.
    ADF, Amsterdam Density Functional (ADF) Program, Version 2008 (Vrije Universiteit, Amsterdam, 2008).Google Scholar
  44. 44.
    S. D. Vosko, L. Wilk, and M. Nusair (1990). Canad. J. Chem. 58, 1200.Google Scholar
  45. 45.
    A. D. Becke (1986). J. Chem. Phys. 84, 4524.CrossRefGoogle Scholar
  46. 46.
    A. D. Becke (1988). Phys. Rev. A38, 2098.Google Scholar
  47. 47.
    J. P. Perdew (1986). Phys. Rev. B 33, 8882.Google Scholar
  48. 48.
    J. P. Perdew (1986). Phys. Rev. B 34, 7406.CrossRefGoogle Scholar
  49. 49.
    E. van Lenthe, E. J. Baerends, and J. G. Snijders (1993). J. Chem. Phys. 99, 4597.CrossRefGoogle Scholar
  50. 50.
    E. van Lenthe, E. J. Baerends, and J. G. Snijders (1994). J. Chem. Phys. 101, 9783.CrossRefGoogle Scholar
  51. 51.
    E. van Lenthe, R. van Leeuwen, and E. J. Baerends (1996). Int. J. Quant. Chem. 57, 281.CrossRefGoogle Scholar
  52. 52.
    E. van Lenthe, A. Ehlers, and E. J. Baerends (1999). J. Chem. Phys. 110, 8943.CrossRefGoogle Scholar
  53. 53.
    L. Versluis and T. Ziegler (1988). J. Chem. Phys. 88, 322.CrossRefGoogle Scholar
  54. 54.
    J. P. Perdew, M. Ernzerhof, and K. Burke (1996). J. Chem. Phys. 105, 9982.CrossRefGoogle Scholar
  55. 55.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.CrossRefGoogle Scholar
  56. 56.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1997). Phys. Rev. Lett. 78, 1396.CrossRefGoogle Scholar
  57. 57.
    M. Ernzerhof, and G. E. Scuseria (1999). J. Chem. Phys. 110, 5029.CrossRefGoogle Scholar
  58. 58.
    C. Adamo, and V. Barone (1999). J. Chem. Phys. 110, 6158.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nabila Guechtouli
    • 1
  • Abdou Boucekkine
    • 2
    • 3
  • Jean-François Halet
    • 2
    • 3
  • Samia Kahlal
    • 2
    • 3
  • Hacène Meghezzi
    • 1
  • Jean-Yves Saillard
    • 2
    • 3
  1. 1.Laboratoire de Thermodynamique et de Modélisation MoléculaireUniversité des Sciences et de la Technologie Houari BoumedieneBab Ezzouar, AlgerAlgérie
  2. 2.UMR 6226 Institut des Sciences Chimiques de RennesCNRS-Université de Rennes 1, Campus de BeaulieuRennes-CedexFrance
  3. 3.Université Européenne de BretagneRennesFrance

Personalised recommendations