Journal of Cluster Science

, Volume 23, Issue 4, pp 1019–1028 | Cite as

Synthesis of Hollow SiO2 Nanoparticles from Dy2O3@SiO2 Core–Shell Nanocomposites via a Recyclable Sonochemical Method

  • Masoud Salavati-Niasari
  • Jaber Javidi
Original Paper


Hollow silica nanoparticles were prepared from Dy2O3@SiO2 core–shell nanocomposites, for the first time, by a simple ultrasonic assisted sol–gel method. The Dy2O3@SiO2 core–shell nanocomposites were prepared by the deposition of a SiO2 layer onto the surface of Dy2O3 nanoparticles using a three-step coating process. The hollow SiO2 nanostructures were obtained by selective removal of the Dy2O3 cores. The structure, morphology and composition of the products were determined by the techniques of X-ray diffraction, Fourier transfom infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results indicated that hollow SiO2 nanostructures were sphere-like shape with the average size of 20 nm and had an amorphous crystal structure. The important advantage of this process is the recyclability of the Dy2O3 nanoparticles as the starting material of the reaction.


Core–shell nanocomposites Sonochemical SiO2 Dy2O3 Chemical synthesis 



Authors are grateful to the council of Iran National Science Foundation and university of Kashan for their unending effort to provide financial support to undertake this work.


  1. 1.
    S. W. Kim, M. Kim, W. Y. Lee, and T. Hyeon (2002). J. Am. Chem. Soc. 124, 7642.CrossRefGoogle Scholar
  2. 2.
    Y. S. Li, J. L. Shi, Z. L. Hua, H. R. Chen, M. L. Ruan, and D. S. Yan (2003). Nano. Lett. 3, 609.CrossRefGoogle Scholar
  3. 3.
    Y. Wang, L. Cai, and Y. Xia (2005). Adv. Mater. 17, 473.CrossRefGoogle Scholar
  4. 4.
    X. Xu and Asher (2004). J. Am. Chem. Soc. 126, 7940.CrossRefGoogle Scholar
  5. 5.
    Y. R. Ma, L. M. Qi, J. M. Ma, and H. M. Cheng (2003). Acta Chim. Sin. 61, 1675.Google Scholar
  6. 6.
    Y. S. Han, G. Y. Jeong, S. Y. Leea, Kun, and H. Kim (2007). J. Solid State Chem. 180, 2978.CrossRefGoogle Scholar
  7. 7.
    C. Graf, D. L. J. Vossen, A. Imhof, and A. van Blaaderen (2003). Langmuir 19, 6693.CrossRefGoogle Scholar
  8. 8.
    A. B. Panda, G. Glaspell, and M. S. El-Shall (2007). J. Phys. Chem. C 111, 1861.CrossRefGoogle Scholar
  9. 9.
    A. W. Xu, Y. P. Fang, L. P. You, and H. Q. Liu (2003). J. Am. Chem. Soc. 125, 1494.CrossRefGoogle Scholar
  10. 10.
    R. Si, Y. W. Zhang, L. P. You, and C. H. Yan (2005). Angew. Chem. Int. Ed. 44, 3256.CrossRefGoogle Scholar
  11. 11.
    Y. H. Deng, D. W. Qi, C. H. Deng, X. M. Zhang, and D. Y. Zhao (2008). J. Am. Chem. Soc. 130, 28.CrossRefGoogle Scholar
  12. 12.
    T. Zhai, Z. Gu, Y. Dong, H. Zhong, and J. Yao (2007). J. Phys. Chem. C 111, 11604.CrossRefGoogle Scholar
  13. 13.
    G. Liu and G. Hong (2005). J. Solid State Chem. 178, 1647.CrossRefGoogle Scholar
  14. 14.
    T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian, and S. Yoshikawa (2006). J. Colloid Interf. Sci. 300, 219.CrossRefGoogle Scholar
  15. 15.
    M. Salavati-Niasari, J. Javidi, and F. Davar (2010). Ultrason. Sonochem. 17, 870.CrossRefGoogle Scholar
  16. 16.
    F. Mohandes, F. Davar, and M. Salavati-Niasari (2010). J. Magn. Magn. Mater. 322, 782.CrossRefGoogle Scholar
  17. 17.
    M. Salavati-Niasari, F. Davar, and M. R. Loghman-Estarki (2010). J. Alloys Compd. 494, 199.CrossRefGoogle Scholar
  18. 18.
    M. Salavati-Niasari, D. Ghanbari, and F. Davar (2010). J. Alloys Compd. 492, 570.CrossRefGoogle Scholar
  19. 19.
    M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar (2008). Chem. Eng. J. 145, 346.CrossRefGoogle Scholar
  20. 20.
    M. Salavati-Niasari, M. Bazarganipour, and F. Davar (2010). J. Alloys Compd. 489, 530.CrossRefGoogle Scholar
  21. 21.
    Y. Zhu, J. Shi, H. Chen, W. Shen, and X. Dong (2005). Microporous Mesoporous Mater. 84, 218.CrossRefGoogle Scholar
  22. 22.
    A. Stein (2001). Microporous Mesoporous Mater. 44–45, 227.CrossRefGoogle Scholar
  23. 23.
    J. F. Chen, H. M. Ding, J. X. Wang, and L. Shao (2004). Biomaterials 25, 723.CrossRefGoogle Scholar
  24. 24.
    M. Darbandi, R. Thomann, and T. Nann (2007). Chem. Mater. 19, 1700.CrossRefGoogle Scholar
  25. 25.
    L. Y. Hao, C. L. Zhu, W. Q. Jiang, C. N. Chen, and Z. Y. Chen (2004). J. Mater. Chem. 14, 2929.CrossRefGoogle Scholar
  26. 26.
    F. Li, X. Huang, Y. Jiang, L. Liu, and Z. Li (2009). Mater. Res. Bull. 44, 437.CrossRefGoogle Scholar
  27. 27.
    Y.-S. Han, G.-Y. Jeong, S.-Y. Lee, K.-H. Moon, and H.-K. Kim (2009). Mater. Lett. 63, 1278.CrossRefGoogle Scholar
  28. 28.
    M. Salavati-Niasari, N. Mir, and F. Davar (2010). Inorg. Chim. Acta 363, 1719.CrossRefGoogle Scholar
  29. 29.
    M. Salavati-Niasari, N. Mir, and F. Davar (2010). App. Surf. Sci. 256, 4003.CrossRefGoogle Scholar
  30. 30.
    P. Innocenzi, P. Falcaro, D. Grosso, and F. Babonneau (2003). J. Phys. Chem. B 107, 4711.CrossRefGoogle Scholar
  31. 31.
    R. Jenkins and R. L. Snyder Chemical Analysis: Introduction to X-ray Powder Diffractometry (Wiley, New York, 1996), p. 90.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran

Personalised recommendations