Journal of Cluster Science

, Volume 23, Issue 2, pp 585–596 | Cite as

Two Isostructural Lanthanide Coordination Frameworks Assembled from H3nbtc as the Single Ligand: Syntheses, Crystal Structures, and Luminescence

  • Wen-Dong Song
  • Shi-Jie Li
  • Li-Li Ji
  • Shao-Wei Tong
  • Dong-Liang Miao
Original Paper


Two new isostructural coordination polymers, namely, [Ln(nbtc)·2H2O] n [Ln = Eu (1), Tm (2)] (H3nbtc = 5-nitrobenzene-1,2,3-tricarboxylic acid), have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. Both compounds are sandwich-like 2D layered network built by the 1D Ln-carboxylate chains and nbtc3− linkers, displaying the same 3D supramolecular network via intermolecular hydrogen bonds. The photoluminescence and lifetime of 1 in the solid state has also been investigated.


Lanthanide compounds Luminescence Thermal stability 5-Nitrobenzene-1,2,3-tricarboxylate 



We acknowledge Public Science and Technology Research Funds Projects of Ocean (grant no. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project (grant no. A2009003-018(c)), the Guangdong Chinese Academy of Science comprehensive strategic cooperation project (grant no. 2009B091300121), the Guangdong Province Key Project in the Field of Social Development (grant no. A2009011-007(c)).

Supplementary material

10876_2012_484_MOESM1_ESM.rar (12 kb)
Supplementary material 1 (RAR 11 kb)


  1. 1.
    J. P. Zhang, Y. B. Zhang, J. B. Lin, and X. M. Chen (2012). Chem. Rev. 112, 1001.CrossRefGoogle Scholar
  2. 2.
    S. Horiuchi, T. Murase, and M. Fujita (2011). J. Am. Chem. Soc. 133, 12445.CrossRefGoogle Scholar
  3. 3.
    C. M. G. dos Santos, A. J. Harte, S. J. Quinn, and T. Gunnlaugsson (2008). Coord. Chem. Rev. 252, 2512.CrossRefGoogle Scholar
  4. 4.
    F. X. Llabrés i Xamena, A. Abad, A. Corma, and H. Garcia (2007). J. Catal. 250, 294.CrossRefGoogle Scholar
  5. 5.
    X. M. Chen and M. L. Tong (2007). Acc. Chem. Res. 40, 162.CrossRefGoogle Scholar
  6. 6.
    G. L. Law, K. L. Wong, K. K. Lau, H. L. Tam, K. W. Cheah, and W. T. Wong (2007). Eur. J. Inorg. Chem. 5419.Google Scholar
  7. 7.
    P. K. Thallapally, C. A. Fernandez, R. K. Motkuri, S. K. Nune, J. Liu, and C. H. F. Peden (2010). DaltonTrans. 39, 1692.CrossRefGoogle Scholar
  8. 8.
    J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. B. T. Nguyen, and J. J. Hupp (2009). Chem. Soc. Rev. 38, 1450.CrossRefGoogle Scholar
  9. 9.
    W. L. Leong and J. J. Vittal (2011). Chem. Rev. 111, 688.CrossRefGoogle Scholar
  10. 10.
    Y. L. Wang, D. Q. Yuan, W. H. Bi, X. Li, X. J. Li, F. Li, and R. Cao (2005). Cryst. Growth Des. 5, 1849.CrossRefGoogle Scholar
  11. 11.
    D. Y. Ma, W. X. Wang, Y. W. Li, J. Li, C. Daiguebone, G. Calvez, and O. Guillou (2010). CrystEngComm 12, 4372.CrossRefGoogle Scholar
  12. 12.
    H. L. Jiang, Y. Tatsu, Z. H. Lu, and Q. Xu (2010). J. Am. Chem. Soc. 132, 5586.CrossRefGoogle Scholar
  13. 13.
    J. Rinck, G. Novitchi, W. Van den Heuvel, L. Ungur, Y. Lan, W. Wernsdorfer, C. E. Anson, L. F. Chibotaru, and A. K. Powell (2010). Angew. Chem. Int. Ed. 49, 7583.CrossRefGoogle Scholar
  14. 14.
    Y. Wada, T. Okubo, M. Ryo, T. Nakazawa, Y. Hasegawa, and S. Yanagida (2000). J. Am. Chem. Soc. 122, 8583.CrossRefGoogle Scholar
  15. 15.
    W. D. Song, S. J. Li, D. L. Miao, L. L. Ji, N. S. Weng, E. R. T. Tiekink, and D. Y. Ma (2012). Inorg. Chem. Commun. 17, 91.CrossRefGoogle Scholar
  16. 16.
    C. J. Li, Z. J. Lin, M. X. Peng, J. D. Leng, M. M. Yang, and M. L. Tong (2008). Chem. Commun. 47, 6348.CrossRefGoogle Scholar
  17. 17.
    A. D. Bettencourt-Dias (2005). Inorg. Chem. 44, 8.CrossRefGoogle Scholar
  18. 18.
    A. Thirumurugan and S. Natarajan (2004). Eur. J. Inorg. Chem. 762.Google Scholar
  19. 19.
    A. D. Cutland, J. A. Halfen, J. W. Kampf, and V. L. Pecoraro (2001). J. Am. Chem. Soc. 123, 6211.CrossRefGoogle Scholar
  20. 20.
    A. Thirumurugan and S. Natarajan (2004). Inorg. Chem. Commun. 7, 395.CrossRefGoogle Scholar
  21. 21.
    N. L. Rosi, J. Kim, M. Eddaoudi, B. L. Chen, M. O’Keeffe, and O. M. Yaghi (2005). J. Am. Chem. Soc. 127, 1504.CrossRefGoogle Scholar
  22. 22.
    Z. Y. Li, G. S. Zhu, X. D. Guo, X. J. Zhao, Z. Jin, and S. L. Qiu (2007). Inorg. Chem. 46, 5174.CrossRefGoogle Scholar
  23. 23.
    X. D. Guo, G. S. Zhu, Z. Y. Li, Y. Chen, X. T. Li, and S. L. Qiu (2006). Inorg. Chem. 45, 4065.CrossRefGoogle Scholar
  24. 24.
    C. D. Wu, C. Z. Lu, W. B. Yang, S. F. Lu, H. H. Zhuang, and J. S. Huang (2002). Eur. J. Inorg. Chem. 797.Google Scholar
  25. 25.
    Q. F. Yang, Y. Yu, T. Y. Song, J. H. Yu, X. Zhang, J. Q. Xu, and T. G. Wang (2009). CrystEngComm 11, 1642.CrossRefGoogle Scholar
  26. 26.
    K. M. L. Taylor, A. Jin, and W. B. Lin (2008). Angew. Chem. Int. Ed. 47, 7722.CrossRefGoogle Scholar
  27. 27.
    S. Surblé, C. Serre, F. Millange, and G. Férey (2006). Solid State Sci. 8, 413.CrossRefGoogle Scholar
  28. 28.
    G. C. Wei, Z. B. Duan, Z. S. Jin, and J. Z. Ni (1992). Chin. J. Struct. Chem. 11, 96.Google Scholar
  29. 29.
    R. Z. Ma, H. B. Chu, Y. L. Zhao, Q. Wuren, and M. Shan (2010). Spectrochim. Acta A 77, 419.CrossRefGoogle Scholar
  30. 30.
    L. F. Ma, B. Liu, L. Y. Wang, J. L. Hu, and M. Du (2010). CrystEngComm 12, 1439.CrossRefGoogle Scholar
  31. 31.
    L. F. Ma, Q. L. Meng, L. Y. Wang, B. Liu, and F. P. Liang (2010). Dalton Trans. 39, 8210.CrossRefGoogle Scholar
  32. 32.
    L. F. Ma, Q. L. Meng, C. P. Li, B. Li, L. Y. Wang, M. Du, and F. P. Liang (2010). Cryst. Growth Des. 10, 3036.CrossRefGoogle Scholar
  33. 33.
    L. F. Ma, C. P. Li, L. Y. Wang, and M. Du (2010). Cryst. Growth Des. 10, 2610.Google Scholar
  34. 34.
    X. F. Zhu, N. Wang, Y. H. Luo, Y. Pang, D. Tian, and H. Zhang (2011). Aust. J. Chem. 64, 1346.CrossRefGoogle Scholar
  35. 35.
    S. J. Li, W. D. Song, D. L. Miao, and D. Y. Ma (2011). Acta Crystallogr. C 67, m105.CrossRefGoogle Scholar
  36. 36.
    S. J. Li, J. S. Liu, J. Guo, L. L. Ji, W. D. Song, and D. Y. Ma (2012). Z. Anorg. Allg. Chem. 638, 832.Google Scholar
  37. 37.
    D. W. Min and S. W. Lee (2002). Inorg. Chem. Commun. 5, 978.CrossRefGoogle Scholar
  38. 38.
    J. C. Trombe and A. Mohanu (2004). Solid State Sci. 6, 1403.CrossRefGoogle Scholar
  39. 39.
    G. Oczko and P. Starynowicz (2005). J. Mol. Struct. 740, 237.CrossRefGoogle Scholar
  40. 40.
    A. De Betterncount Dias and S. Viswanathan (2004). Chem. Commun. 1024.Google Scholar
  41. 41.
    B. Zhao, X. Y. Chen, P. Cheng, D. Z. Liao, S. P. Yan, and Z. H. Jiang (2004). J. Am. Chem. Soc. 126, 15394.CrossRefGoogle Scholar
  42. 42.
    J. C. G. Bünzli, in J. C. G. Bünzli and G. R. Choppin (eds.), Lanthanide Probes in Life, Chemical and Earth Sciences, Theory and Practice (Elsevier Scientific Publishers, Amsterdam, 1989), Chap. 7, p. 219.Google Scholar
  43. 43.
    Bruker, SMART, SAINT and SADABS (Bruker AXS Inc., Madison, 2007).Google Scholar
  44. 44.
    G. M. Sheldrick (2008). Acta Crystallogr. A64, 112.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wen-Dong Song
    • 1
  • Shi-Jie Li
    • 2
  • Li-Li Ji
    • 2
  • Shao-Wei Tong
    • 3
  • Dong-Liang Miao
    • 3
  1. 1.College of ScienceGuangdong Ocean UniversityZhanjiangPeople’s Republic of China
  2. 2.School of Environment Science and EngineeringDonghua UniversityShanghaiPeople’s Republic of China
  3. 3.College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangPeople’s Republic of China

Personalised recommendations