Advertisement

Journal of Cluster Science

, Volume 23, Issue 4, pp 953–966 | Cite as

Structure and Magnetism of Hybrid Fe and Co Nanoclusters up to N ≤ 7 Atoms

  • G. M. Faccin
  • E. Z. da Silva
Original Paper

Abstract

The structural and magnetic properties of small gas-phase Fe m Co n clusters with m + n ranging between 2 and 7 atoms are investigated using spin-polarized density functional theory. For a given cluster size possible compositions are subject to optimization using a variety of initial structures. The geometry, bond lengths, binding energies and magnetization are reported for the lowest energy structures. The results show that a magnetization peak occurs for Fe4, while for hybrid clusters, switching a cobalt atom with an iron atom increases the cluster’s total magnetization by 1 μ B . Our structural predictions are generally in agreement with other theoretical results; the origin of the discrepancies arising in some cases is discussed.

Keywords

Iron nanoclusters Cobalt nanoclusters Magnetic moments 

Notes

Acknowledgments

The authors would like to thank CNPq, Fapesp, Capes and FAEPEX-Unicamp for financial support; the community from the QE-Users mailing list for their help regarding the use of Quantum Espresso, and Cenapad-SP and IFGW/Unicamp for providing computational resources to this work.

References

  1. 1.
    S. Sugano and H. Koizumi, Microcluster Physics (Springer, Berlin, 1998).CrossRefGoogle Scholar
  2. 2.
    S. Shouheng, et al. (2000). Science 287, 1989.CrossRefGoogle Scholar
  3. 3.
    Raksha, et al. (2007). U.S. Patent 7,258,900 B2, 21 Aug 2007.Google Scholar
  4. 4.
    Burrows (2007). U.S. Patent 7,192,628 B2, 20 Mar 2007.Google Scholar
  5. 5.
    A. S. Lübbe, C. Alexiou, and C. Bergemann (2001). J. Surg. Res. 95, 200.CrossRefGoogle Scholar
  6. 6.
    A. Tampieri, E. Landi, F. Valentini, M. Sandri, T. D’Alessandro, V. Dediu, and M. Marcacci (2011). Nanotechnology 22, 015104.CrossRefGoogle Scholar
  7. 7.
    L. Lacroix, N. F. Huls, D. Ho, X. Sun, K. Cheng, and S. Sun (2011). Nano Lett. 11, 1641.CrossRefGoogle Scholar
  8. 8.
    M. Pereiro, D. Baldomir, and J. E. Arias (2007). Phys. Rev. A 75, 063204.CrossRefGoogle Scholar
  9. 9.
    S. Sahoo, A. Hucht, M. E. Gruner, G. Rollmann, P. Entel, A. Postnikov, J. Ferrer, L. Fernández-Seivane, M. Richter, D. Fritsch, and S. Sil (2010). Phys. Rev. B 82, 054418.CrossRefGoogle Scholar
  10. 10.
    G. Guzmán-Ramírez, J. Robles, A. Vega, and F. Aguilera-Granja (2011). J. Chem. Phys. 134, 054101.CrossRefGoogle Scholar
  11. 11.
    G. Mpourmpakis, G. E. Froudakis, A. N. Andriotis, and M. Menon (2005). Phys. Rev. B 72, 104417.CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, Y. Duan, J. Zhang, and K. Xu (2011). J. Magn. Magn. Mater. 323, 842.CrossRefGoogle Scholar
  13. 13.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch (2009). J. Phys. Condens. Matter 21, 395502.CrossRefGoogle Scholar
  14. 14.
    A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos (1990). Phys. Rev. B 41, 1227.CrossRefGoogle Scholar
  15. 15.
    Quantum Espresso Online Pseudopotential Database (2011). http://www.quantum-espresso.org/pseudo.ph. Accessed 25 Feb 2011.
  16. 16.
    A. Vega, J. Dorantes-Dávila, and L. C. Balbás (1993). Phys. Rev. B 47, 4742.CrossRefGoogle Scholar
  17. 17.
    S. Datta, M. Kabir, S. Ganguly, B. Sanyal, T. Saha-Dasgupta, and A. Mookerjee (2007). Phys. Rev. B 76, 014429.CrossRefGoogle Scholar
  18. 18.
    O. Diéguez, M. M. G. Alemany, C. Rey, P. Ordejón, and L. J. Gallego (2001). Phys. Rev. B 63, 205407.CrossRefGoogle Scholar
  19. 19.
    S. G. Louie, S. Froyen, and M. L. Cohen (1982). Phys. Rev. B 26, 1738.CrossRefGoogle Scholar
  20. 20.
    D. Porezag, M. R. Pederson, and A. Y. Liu (1999). Phys. Rev. B 60, 14312.CrossRefGoogle Scholar
  21. 21.
    J. P. Perdew, K. Burke, and M. Ernzherof (1996). Phys. Rev. Lett. 77, 3865.CrossRefGoogle Scholar
  22. 22.
    A. Baldereschi (1973). Phys. Rev. B 7, 5212.CrossRefGoogle Scholar
  23. 23.
    D. J. Chadi and M. L. Cohen (1973). Phys. Rev. B 8, 5747.CrossRefGoogle Scholar
  24. 24.
    H. J. Monkhorst and J. D. Pack (1976). Phys. Rev. B 13, 5188.CrossRefGoogle Scholar
  25. 25.
    M. Methfessel and A. T. Paxton (1989). Phys. Rev. B 40, 3616.CrossRefGoogle Scholar
  26. 26.
    S. R. Billeter, A. J. Turner, and W. Thiel (2000). Phys. Chem. Chem. Phys. 2, 2177.CrossRefGoogle Scholar
  27. 27.
    S. R. Billeter, A. Curioni, and W. Andreoni (2003). Comput. Mater. Sci. 27, 437.CrossRefGoogle Scholar
  28. 28.
    I. Shim and K. A. Gingerich (1982). J. Chem. Phys. 77, 2490.CrossRefGoogle Scholar
  29. 29.
    M. Tomonari and H. Tatewaki (1988). J. Chem. Phys. 88, 1828.CrossRefGoogle Scholar
  30. 30.
    X. G. Gong and Q. Q. Zheng (1995). J. Phys. Condens. Matter 7, 2421.CrossRefGoogle Scholar
  31. 31.
    T. Oda, A. Pasquarello, and R. Car (1998). Phys. Rev. Lett. 80, 3622.CrossRefGoogle Scholar
  32. 32.
    J. Izquierdo, A. Vega, L. C. Balbás, D. Sánchez-Portal, J. Junquera, E. Artacho, J. M. Soler, and P. Ordejón (2000). Phys. Rev. B 61, 13639.CrossRefGoogle Scholar
  33. 33.
    S. K. Nayak, P. Jena, V. S. Stepanyuk, and W. Hergert (2000). Surf. Sci. 491, 219.CrossRefGoogle Scholar
  34. 34.
    P. Calaminici (2004). Chem. Phys. Lett. 387, 253.CrossRefGoogle Scholar
  35. 35.
    H. J. Kulik, M. Cococcioni, D. A. Scherlis, and N. Marzari (2006). Phys. Rev. Lett. 97, 103001.CrossRefGoogle Scholar
  36. 36.
    G. Rollman, H. C. Herper, and P. Entel (2006). J. Phy. Chem. A 110, 10799.CrossRefGoogle Scholar
  37. 37.
    J. H. Gu and Z. L. Zhu (2007). Acta Metall. Sin. 20, 341.Google Scholar
  38. 38.
    S. Yu, S. Chen, W. Zhang, L. Yu, and Y. Yin (2007). Chem. Phys. Lett. 446, 217.CrossRefGoogle Scholar
  39. 39.
    M. Casula, M. Marchi, S. Azadi, and S. Sorella (2009). Chem. Phys. Lett. 477, 255.CrossRefGoogle Scholar
  40. 40.
    G. Kim, Y. Park, M. J. Han, J. Yu, C. Heo, and Y. H. Lee (2009). Solid State Commun. 149, 2058.CrossRefGoogle Scholar
  41. 41.
    G. Rollman, P. Entel, and S. Sahoo (2006). Comput. Mater. Sci. 35, 275.CrossRefGoogle Scholar
  42. 42.
    G. Doreen, L. Lineberger, and W. C. Lineberger (1986). J. Chem. Phys. 85, 51.CrossRefGoogle Scholar
  43. 43.
    H. Purdum, P. A. Montano, G. K. Shenoy, and T. Morrison (1981). Phys. Rev. B 25, 4412.CrossRefGoogle Scholar
  44. 44.
    D. M. Cox, D. J. Trevor, R. L. Whetten, E. A. Rohlfing, and A. Kaldor (1985). Phys. Rev. B 32, 7290.CrossRefGoogle Scholar
  45. 45.
    E. M. Nour, C. Alfaro-Franco, K. A. Gingerich, and J. Laane (1987). J. Chem. Phys. 86, 4779.CrossRefGoogle Scholar
  46. 46.
    G. Rollmann and P. Entel (2004). Comput. Lett. 1, 288.CrossRefGoogle Scholar
  47. 47.
    A. H. Pakiari and M. Mousavi (2010). J. Phys. Chem. A 114, 10209.CrossRefGoogle Scholar
  48. 48.
    D. M. Cox, D. J. Trevor, R. L. Whetten, E. A. Rholfing, and A. Kaldor (1985). Phys. Rev. B 32, 7290.CrossRefGoogle Scholar
  49. 49.
    R. C. Longo, M. M. G. Alemany, A. Vega, J. Ferrer, and L. J. Gallego (2008). Nanotechnology 19, 245701.CrossRefGoogle Scholar
  50. 50.
    Q. Zhao, T. D. Harris, and T. A. Betley (2011). J. Am. Chem. Soc. 133, 8293.CrossRefGoogle Scholar
  51. 51.
    A. Kant and B. Strauss (1964). J. Chem. Phys. 41, 3806.CrossRefGoogle Scholar
  52. 52.
    C. Jamorski, A. Martinez, M. Castro, and D. R. Salahub (1997). Phys. Rev. B 55, 10905.CrossRefGoogle Scholar
  53. 53.
    A. Sebetci (2012). J. Magn. Magn. Mater. 324, 588.CrossRefGoogle Scholar
  54. 54.
    A. Sebetci (2008). Chem. Phys. 354, 196.CrossRefGoogle Scholar
  55. 55.
    H. Fan, C. Liu, and M. Liao (1997). Chem. Phys. Lett. 273, 353.CrossRefGoogle Scholar
  56. 56.
    H. Wang, Y. G. Khait, and M. R. Hoffmann (2005). Mol. Phys. 103, 263.CrossRefGoogle Scholar
  57. 57.
    S. Yanagisawa, T. Tsuneda, and K. Hirao (2000). J. Chem. Phys. 112, 545.CrossRefGoogle Scholar
  58. 58.
    G. Doreen, L. Lineberger, and W. C. Lineberger (1986). J. Chem. Phys. 85, 51.CrossRefGoogle Scholar
  59. 59.
    J. Dong, Z. Hu, R. Craig, J. R. Lombardi, and D. M. Linday (1994). J. Chem. Phys. 101, 9280.CrossRefGoogle Scholar
  60. 60.
    X. Xu, S. Yin, R. Moro, and W. A. de Heer (2005). Phys. Rev. Lett. 95, 237209.CrossRefGoogle Scholar
  61. 61.
    R. J. Van Zee, Y. M. Hamrick, S. Li, and W. Weltner Jr. (1992). Chem. Phys. Lett. 195, 214.CrossRefGoogle Scholar
  62. 62.
    H. Yoshida, A. Terasaki, K. Kobayashi, M. Tsukada, and T. Kondow (1995). J. Chem. Phys. 102, 5960.CrossRefGoogle Scholar
  63. 63.
    D. D. Koelling and B. N. Harmon (1977). J. Phys. C Solid State Phys. 10, 3107.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Câmpus de Ponta Porã, Universidade Federal de Mato Grosso do Sul, UFMSPonta PorãBrazil
  2. 2.Institute of Physics “Gleb Wataghin”, University of Campinas, UnicampCampinasBrazil

Personalised recommendations