Journal of Cluster Science

, Volume 23, Issue 2, pp 375–382 | Cite as

Biosynthesis of Gold Nanoparticles by Streptomyces sp. ERI-3 Supernatant and Process Optimization for Enhanced Production

  • N. Faghri Zonooz
  • M. Salouti
  • R. Shapouri
  • J. Nasseryan
Original Paper


In this study, we present a simple and eco-friendly method for extracellular biosynthesis of gold nanoparticles by Streptomyces sp. ERI-3 cell-free supernatant. The research was also aimed to evaluate the effects of different reaction parameters including incubation temperature, reaction time, HAuCl4 concentration and pH on gold nanoparticles production. The UV–Vis spectroscopy was used to monitor the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized with XRD, TEM, and SEM. The average particle size ranged from 10 to 30 nm with spherical shape at optimum conditions.


Gold nanoparticles Biosynthesis Streptomyces sp. ERI-3 Cell-free supernatant Optimization 


  1. 1.
    S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, and M. Sastry (2004). Nat. Mater. 3, 482.CrossRefGoogle Scholar
  2. 2.
    Y. Li, X. Duan, Y. Qian, Y. Li, and H. Liao (1999). Colloid Surf. B 209, 347.CrossRefGoogle Scholar
  3. 3.
    M. Gericke and A. Pinches (2006). Hydrometallurgy 83, 132.CrossRefGoogle Scholar
  4. 4.
    N. Pugazhenthiran, S. Anandan, G. Kathiravan, N. Kannaian, S. Prakash, U. Crawford, and M. A. Kumar (2009). J. Nanopart. Res. 11, 1811.CrossRefGoogle Scholar
  5. 5.
    A. Ahmad, S. Senapati, M. I. Khan, R. Kumar, and M. Sastry (2003). Langmuir 19, 3550.CrossRefGoogle Scholar
  6. 6.
    A. Ahmad, S. Senapati, M. I. Khan, R. Kumar, R. Ramani, V. Srinivas, and M. Sastry (2003). Nanotechnology 14, 824.CrossRefGoogle Scholar
  7. 7.
    D. Mandal, M. E. Bolander, D. Mukhopadhyay, G. Sarkar, and P. Mukherjee (2006). Appl. Microbiol. Biotechnol. 69, 485.CrossRefGoogle Scholar
  8. 8.
    H. Shiying, G. Zhirui, Z. Yu, Z. Song, W. Jing, and G. Ning (2007). Mater. Lett. 61, 3984.CrossRefGoogle Scholar
  9. 9.
    K. M. Moghaddam (2010). J. Young Investig. 19, 1.Google Scholar
  10. 10.
    M. Karbasian, S. M. Atyabi, S. D. Siadat, S. B. Momen, and D. Norouzian (2008). Am. J. Agric. Biol. Sci. 3, 433.CrossRefGoogle Scholar
  11. 11.
    A. Rangnekar, T. K. Sarma, A. K. Singh, J. Deck, A. Ramesh, and A. Chattopadhyay (2007). Langmuir 23, 5700.CrossRefGoogle Scholar
  12. 12.
    M. V. Arasu, V. Duraipandiyan, P. Agastian, and S. Ignacimuthu (2009). J. Med. Mycol. 19, 22.CrossRefGoogle Scholar
  13. 13.
    V. S. Bernan, D. A. Montenegro, J. D. Korshalla, W. M. Maiese, D. A. Steinberg, and M. Greenstein (1994). J. Antibiot. 47, 1417.CrossRefGoogle Scholar
  14. 14.
    J. G. Holt, R. N. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams Bergey’s manual of determinative bacteriology, vol. 1 (Williams and Wilkins, Baltimore, 1994), p. 668.Google Scholar
  15. 15.
    J. J. Enticknap, M. Kelly, O. Peraud, and R. T. Hill (2006). Appl. Environ. Microbiol. 72, 3724.CrossRefGoogle Scholar
  16. 16.
    M. Sastry, A. Ahmad, M. I. Khan, and R. Kumar (2003). Curr. Sci. 85, 162.Google Scholar
  17. 17.
    A. M. Kalsin, et al. (2006). Science 312, 420.CrossRefGoogle Scholar
  18. 18.
    J. H. Liao, K. J. Chen, L. N. Xu, C. W. Gel, J. Wang, L. Huang, and N. Gu (2003). Appl. Phys. A 76, 541.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • N. Faghri Zonooz
    • 1
  • M. Salouti
    • 2
  • R. Shapouri
    • 2
  • J. Nasseryan
    • 2
  1. 1.Department of Microbiology, Faculty of Sciences, Zanjan BranchIslamic Azad UniversityZanjanIran
  2. 2.Biological Research Center, Zanjan BranchIslamic Azad UniversityEtemadiehIran

Personalised recommendations