Advertisement

Journal of Cluster Science

, Volume 23, Issue 2, pp 311–324 | Cite as

The Structural Features of the Hydrated Ferrous Ion Clusters: [Fe(H2O) n ]2+ (n = 1–19)

  • X. L. Lei
  • B. C. Pan
Original Paper

Abstract

The low-lying structures of the hydrated ferrous ion clusters [Fe(H2O) n ]2+ (n = 1–19) were extensively searched at the level of the density functional theory. The results show that the first hydration shell consists of six water molecules, and the second hydration shell contains seven water molecules. Furthermore, it is found that all the lowest-energy states of [Fe(H2O) n ]2+ (n = 1–19) clusters are spin quintet states. These lowest-energy states keep well even at finite temperatures. The analyses of the successive water binding energy and natural charges population on ferrous ion clearly show that the influence of ferrous ion on the surrounding water molecules goes beyond the second hydration shell.

Keywords

Hydrated clusters Theoretical calculations 

Notes

Acknowledgment

This study was supported by the National Science Foundation of China (50121202 and 10964012) and by the USTC-IBM Cluster Server.

Supplementary material

10876_2011_431_MOESM1_ESM.doc (73 kb)
Supplementary material 1 (DOC 73 kb)

References

  1. 1.
    H. Ohtaki and T. Radnai (1993). Chem. Rev. 93, 1157.CrossRefGoogle Scholar
  2. 2.
    S. Brar, D. Henderson, J. Schenck, and E. A. Zimmerman (2009). Arch. Neurol. 66, 371.CrossRefGoogle Scholar
  3. 3.
    S. Enthaler, K. Junge, and M. Beller (2008). Angew. Chem. Int. Ed. 47, 3317.CrossRefGoogle Scholar
  4. 4.
    L. A. Curtiss, J. W. Halley, J. Hautman, and A. Rahman (1987). J. Chem. Phys. 86, 2319.CrossRefGoogle Scholar
  5. 5.
    T. Remsungnen and B. M. Rode (2003). J. Phys. Chem. A 107, 2324.CrossRefGoogle Scholar
  6. 6.
    S. Amira, D. Spångberg, M. Probst, and K. Hermansson (2004). J. Phys. Chem. B 108, 496.CrossRefGoogle Scholar
  7. 7.
    B. Ensing and E. J. Baerends (2002). J. Phys. Chem. A 106, 7902.CrossRefGoogle Scholar
  8. 8.
    B. Ensing, F. Buda, P. E. Blöchl, and E. J. Baerends (2002). Phys. Chem. Chem. Phys. 4, 3619.CrossRefGoogle Scholar
  9. 9.
    T. Remsungnen and B. M. Rode (2003). Chem. Phys. Lett. 367, 586.CrossRefGoogle Scholar
  10. 10.
    C. M. Aguilar, W. B. De Almeida, and W. R. Rocha (2007). Chem. Phys. Lett. 449, 144.CrossRefGoogle Scholar
  11. 11.
    S. T. Moin, T. S. Hofer, A. B. Pribil, B. R. Randolf, and B. M. Rode (2010). Inorg. Chem. 49, 5101.CrossRefGoogle Scholar
  12. 12.
    G. J. Herdman and G. W. Neilson (1992). J. Phys.: Condens. Matter 4, 649.CrossRefGoogle Scholar
  13. 13.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; and Gonzalez, C.; Pople, J. A (2003) Gaussian 03, ReVision B.02, Gaussian, Inc., Pittsburgh, PA.Google Scholar
  14. 14.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  15. 15.
    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.CrossRefGoogle Scholar
  16. 16.
    P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 270.CrossRefGoogle Scholar
  17. 17.
    P. Hobza and R. ZahradnZk (1988). Chem. Rev. 88, 871.CrossRefGoogle Scholar
  18. 18.
    X. L. Lei and B. C. Pan (2010). J. Phys. Chem. A 114, 7595.CrossRefGoogle Scholar
  19. 19.
    M. C. F. Wander and A. E. Clark (2008). Inorg. Chem. 47, 8233.CrossRefGoogle Scholar
  20. 20.
    N. Okai, H. Ishikawa, and K. Fuke (2005). Chem. Phys. Lett. 415, 155.CrossRefGoogle Scholar
  21. 21.
    W. Xiao, Q. Q. Xia, Y. F. Zhang, L. X. Ning, Z. F. Cui, Chin. J. Chem. Phys. 22 (2009).Google Scholar
  22. 22.
    M. F. Bush, R. J. Saykally, and E. R. Williams (2007). ChemPhysChem. 8, 2245.CrossRefGoogle Scholar
  23. 23.
    V. S. Bryantsev, M. S. Diallo, and W. A. Goddard III (2009). J. Phys. Chem. A 113, 9559.CrossRefGoogle Scholar
  24. 24.
    L. L. Boyer (1979). Phys. Rev. Lett. 42, 584.CrossRefGoogle Scholar
  25. 25.
    J. P. Lewis, K. R. Glaesemann, G. A. Voth, J. Fritsch, A. A. Demkov, J. Ortega, and O. F. Sankey (2001). Phys. Rev. B 64, 195103.CrossRefGoogle Scholar
  26. 26.
    B. S. Brunschwig, C. Creutz, D. H. Macartney, T. K. Sham, and N. Sutin (1982). Faraday Discuss. Chem. Soc. 74, 113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Physics and Hefei National Laboratory of Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.Department of PhysicsXinjiang Normal UniversityXinjiangPeople’s Republic of China

Personalised recommendations