Advertisement

Journal of Cluster Science

, Volume 23, Issue 1, pp 147–154 | Cite as

Construction of Novel Terbium Green Emissive Gels and Their Unique Thermal Degradation Processes

  • Yan li
  • Qianming Wang
  • Weisheng Cai
Original Paper
  • 91 Downloads

Abstract

In this paper, four green luminescent gels were successfully formed in dimethyl sulfoxide as solvents. The gels are prepared by self-assembly of urea derivatives gelator N,N′-dioctadecylurea 1 and N-octadecylurea 2 in the presence of two terbium complexes. Very interestingly, the analysis of the peak intensities as function of temperature during heating treatments could be described by two linear equations at two stages. The best fit results were composed of two independent decay processes.

Graphical Abstract

The gels are prepared by self-assembly of urea derivatives gelator N,N′-dioctadecylurea 1 and N-octadecylurea 2 in the presence of two terbium complexes. Very interestingly, the analysis of the peak intensities as function of temperature during heating treatments could be described by two linear equations at two stages.

Keywords

Terbium complex Luminescent organogel Temperature 

Notes

Acknowledgments

Q. M. appreciates National Natural Science Foundation of China (No. 21002035) and Guangdong talent fund (No. C10208).

Supplementary material

10876_2011_424_MOESM1_ESM.doc (88 kb)
Supplementary material 1 (DOC 88 kb)

References

  1. 1.
    S. V. Eliseeva and J. C. G. Bünzli (2010). Chem. Soc. Rev. 39, 189–227.CrossRefGoogle Scholar
  2. 2.
    J. C. G. Bünzli and C. Piguet (2005). Chem. Soc. Rev. 34, 1048–1077.CrossRefGoogle Scholar
  3. 3.
    K. Binnemans (2009). Chem. Rev. 109, 4283–7374.CrossRefGoogle Scholar
  4. 4.
    S. Leroy-Lhez and F. Fages (2005). Euro. J. Org. Chem. 13, 2684–2688.CrossRefGoogle Scholar
  5. 5.
    P. Terech and R. G. Weiss (1997). Chem. Rev. 97, 3313–3334.CrossRefGoogle Scholar
  6. 6.
    J. H. van Esch and B. L. Feringa (2000). Angew. Chem., Int. Ed. 39, 2263–2266.CrossRefGoogle Scholar
  7. 7.
    D. J. Abdallah and R. G. Weiss (2000). Adv. Mater. 12, 1237–1239.CrossRefGoogle Scholar
  8. 8.
    M. Suzuki, T. Sato, H. Shirai, and K. Hanabusa (2006). New J. Chem. 30, 1184–1188.CrossRefGoogle Scholar
  9. 9.
    G. De Paoli, Z. Dzolic, F. Rizzo, L. De Cola, F. Vogtle, W. M. Muller, G. Richardt, and M. Zinic (2007). Adv. Funct. Mater. 17, 821–828.CrossRefGoogle Scholar
  10. 10.
    Q. M. Wang, K. Ogawa, K. Toma, and H. Tamiaki (2009). J. Photochem. Photobiol. A 201, 87–90.CrossRefGoogle Scholar
  11. 11.
    M. George, G. Tan, V. T. John, and R. G. Weiss (2005). Chem. Eur. J. 11, 3243–3254.CrossRefGoogle Scholar
  12. 12.
    J. G. Erickson (1954). J. Am. Chem. Soc. 76, 3977–3978.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Chemistry and EnvironmentSouth China Normal UniversityGuangzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Coordination ChemistryNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations