Journal of Cluster Science

, Volume 22, Issue 4, pp 693–704 | Cite as

Nanostructured VOx/VO(PO4)n Using Solid-State Vanadium Containing Phosphazene Precursors: A Useful Potential Bi-Catalyst System

  • Carlos Díaz
  • María Luisa Valenzuela
  • Nicolas Yutronic
  • Valeria Villalobos
  • Gonzalo Barrera
Original Paper


Pyrolysis of molecular precursors containing vanadium organometallic and cyclic phosphazene affords mixtures of nanostructured vanadium oxides and pyrophosphates. The products from the molecular precursor [N3P3(OC6H5)5OC5H4N·Cp2VCl][PF6], and of the mixtures Cp2VCl2/N3P3(OC6H4CHO)6 and Cp2VCl2/[NP(O2C12H8)]3 in several relationships 1:1, 1:3, 1:5 and 1:10, pyrolyzed under air and at 400 °C and 600 °C, give mixtures mainly V2O5 and VO(PO3)2. Varied morphologies depending on the molecular or mixture precursors and of the temperature used were observed. Nanowires with diameters of approximate 40 nm were observed for the 1:5 Cp2VCl2/[NP(O2C12H8)]3 mixture pyrolyzed at 400 °C, while the same mixture pyrolyzed at 600 °C, affords xerogels of V2O5. The products were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), infra-red (IR) spectroscopy and X-ray diffraction (XRD). The preparation method constitutes a novel one-pot solid-state way to nanostructured materials with potential applications both in oxidative dehydrogenation of light hydrocarbons with V2O5, as well as alkenes oxidations with VO(PO3)2.


Vanadium Nanoparticles Pyrolysis Cyclophosphazenes 



Financial support by FONDECYT (project 1085011) is gratefully acknowledged.

Supplementary material

10876_2011_415_MOESM1_ESM.doc (417 kb)
Supplementary material 1 (DOC 417 kb)


  1. 1.
    W. A. Chambers (2009). Adv. Mater. 21, 21.CrossRefGoogle Scholar
  2. 2.
    M. L. Kahn, A. Glaria, C. Pages, M. Monge, L. Macary, A. Maisonnat, and B. Chaudret (2009). J. Chem. Mater. 19, 4044.CrossRefGoogle Scholar
  3. 3.
    C. N. Rao, A. Muller, and A. K. Cheetham The Chemistry of Nanomaterials, chapter 5 (Wiley, VCH, Weinheim, 2004), p. 94.CrossRefGoogle Scholar
  4. 4.
    P. Davidson (2010). Comptes Redus Chemie 13, 142.CrossRefGoogle Scholar
  5. 5.
    D. Murphy, P. Christian, F. DiSalvo, and J. Waszczak (1979). Inorg. Chem. 18, 2800.CrossRefGoogle Scholar
  6. 6.
    W. Menezes, D. Reis, T. Benedetti, M. Oliveira, J. Soares, R. Torresi, and A. Zarbin (2009). J. Colloid Inter. Sci. 337, 586.CrossRefGoogle Scholar
  7. 7.
    F. Krumeich, H.-J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, and R. Nesper (1999). J. Am. Chem. Soc. 121, 8324.CrossRefGoogle Scholar
  8. 8.
    V. Lavayen, C. O’Dwyer, M. A. Santa Ana, S. B. Newcomb, E. R. Benavente, G. Gonzalez, and C. M. Sotomayor (2006). Phys.Stat. Sol 13, 3285.Google Scholar
  9. 9.
    V. Lavayen, C. O’Dwyer, G. Cardenas, G. Gonzalez, and C. M. Sotomayor (2007). Mater. Res. Bull. 42, 674.CrossRefGoogle Scholar
  10. 10.
    T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y. Loide, Y. Bando, and D. Golberg (2010). Adv. Mater. 22, 1.CrossRefGoogle Scholar
  11. 11.
    J. Min Baik, M. Hwa Kim, C. Larson, C. Yavuz, G. Stucky, A. Wodtke, and M. Moskovits (1998). Nano Lett. 9, 3980.CrossRefGoogle Scholar
  12. 12.
    S. Myung, M. Lee, G. Tae Kim, J. Sook, and S. Hong (2005). Adv. Mater. 17, 2361.CrossRefGoogle Scholar
  13. 13.
    C. O’Dwyer, V. Lavayen, D. Fuenzalida, H. Lozano, M. A. Santa Ana, E. Benavente, G. González, and C. Sotomayor (2008). Small 4, 990.CrossRefGoogle Scholar
  14. 14.
    I. Raible, M. Burghard, U. Schlecht, A. Yasuda, and T. Vossmeyer (2005). Sens. Act. B 106, 730.CrossRefGoogle Scholar
  15. 15.
    U. Schlencht, B. Guse, I. Raible, T. Voosmeyer and M. Burghard (2004). Chem. Comm. 2184.Google Scholar
  16. 16.
    K. Takahashi, S. Limmer, Y. Wang, and G. Cao (2004). J. Phys. Chem. B 108, 9795.CrossRefGoogle Scholar
  17. 17.
    N. Pinna, M. Willinger, K. Weiss, J. Urban, and R. Schlogl (2003). Nano Lett. 3, 1131.CrossRefGoogle Scholar
  18. 18.
    H. Kaper, M. Willinger, I. Djerdj, S. Gross, M. Antonietti, and B. Smarsly (2008). J. Mater. Chem. 18, 5761.CrossRefGoogle Scholar
  19. 19.
    D. O’Dwyer, V. Navas, E. R. Lavayen, M. A. Benavente, G. Santa Ana, S. B. Gonzalez, C. Newcomb, and M. Sotomayor (2006). Chem. Mater. 18, 3016.CrossRefGoogle Scholar
  20. 20.
    D. O’Dwyer, V. Navas, E. R. Lavayen, M. A. Benavente, G. Santa Ana, S. B. Gonzalez, C. Newcomb, and M. Sotomayor (2007). Electrochem. Solid-State Lett. 10, A111.CrossRefGoogle Scholar
  21. 21.
    Y. Zhou, Z. Qiu, M. Lu, A. Zhang, and Q. Ma (2007). Mater. Lett. 61, 4073.CrossRefGoogle Scholar
  22. 22.
    L. Mao, C. Liu, and J. Li (2008). J. Mater. Chem. 18, 1640.CrossRefGoogle Scholar
  23. 23.
    H. Fei, M. Liu, H. Zhou, P. Sun, D. Ding, and T. Chen (2009). Solid State Sci. 11, 102.CrossRefGoogle Scholar
  24. 24.
    F. Sediri, F. Touati, and N. Gharbi (2006). Mater. Sci. Eng. B 129, 251.CrossRefGoogle Scholar
  25. 25.
    C. Mao, H. Pan, X. Wu, J. Zhu, and H. Chen (2006). J. Phys. Chem. B 110, 14709.CrossRefGoogle Scholar
  26. 26.
    N. Asim, S. Radiman, M. Yarmo, and M. Banaye (2009). Micro. Meso. Mater. 120, 397–401.CrossRefGoogle Scholar
  27. 27.
    C. Ramana, S. Utsunomiya, R. Ewing, and U. Becker (2006). Solid State Commun. 137, 645.CrossRefGoogle Scholar
  28. 28.
    Z. Zhang, Y. Gao, Z. Chen, J. Du, C. Cao, L. Kang, and H. Luo (2010). Langmuir 26, 1073.Google Scholar
  29. 29.
    C. Ramana, R. Smith, O. Hussain, C. Chusuei, and C. Julien (2005). Chem. Mater. 17, 1213.CrossRefGoogle Scholar
  30. 30.
    J. Kim, Y. Hong, and H. Uhm (2007). Surf. Coat. Technol. 201, 5114.CrossRefGoogle Scholar
  31. 31.
    S. Pol, V. Pol, and A. Gedanken (2004). Chem. Eur. J. 10, 4467.CrossRefGoogle Scholar
  32. 32.
    A. Odani, V. Pol, S. Pol, M. Koltypin, A. Gedanken, and D. Aurbach (2006). Adv. Mater. 18, 1431.CrossRefGoogle Scholar
  33. 33.
    C. Wu, H. Wei, B. Ning, and Y. Xie (2010). Adv. Mater. 22, 1.CrossRefGoogle Scholar
  34. 34.
    J. Stelzer, J. Caro, D. Habel, E. Feike, H. Schubert, M. Fait, and G. Hidde (2004). Chem. Eng. Technol. 27, 839.CrossRefGoogle Scholar
  35. 35.
    G. Kryukova, G. Zenkovets, and V. Parmon (2000). React. Kinet. Catal. Lett. 71, 173.CrossRefGoogle Scholar
  36. 36.
    C. Hess (2009). Chem. Phys. Chem. 10, 319.CrossRefGoogle Scholar
  37. 37.
    V. Augustyn and B. Dunn (2010). Comp. Rend. Chemie 13, 130.CrossRefGoogle Scholar
  38. 38.
    S. H. Ng, S. Y. Chew, J. Wang, D. Wexler, Y. Tournaye, K. Konstantinov, and H. K. Liu (2007). J. Power Sources 174, 1032.CrossRefGoogle Scholar
  39. 39.
    O. Ovsiter and E. V. Kondratenko (2100). Chem. Comm. 4974.Google Scholar
  40. 40.
    G. Carja, Y. Kameshima, and K. Okada (2008). Micropor. Mesopor. Mater. 115, 54.CrossRefGoogle Scholar
  41. 41.
    Y.-M. Liu, W.-F. Feng, T-Ch Li, H.-Y. He, W.-L. Dai, W. Huang, and Cao. K. N. Fan (2006). J. Catal. 239, 12.Google Scholar
  42. 42.
    X. Gao and J. Xu (2006). Appl. Clay Sci. 33, 1.CrossRefGoogle Scholar
  43. 43.
    Sh Kasaoka, E. Sasaoka, and H. Iwayama (1898). Bull Chem. Soc. Jpn. 62, 1226.CrossRefGoogle Scholar
  44. 44.
    C. Díaz and M. L. Valenzuela (2005). J. Chil. Chem. Soc. 50, 417.CrossRefGoogle Scholar
  45. 45.
    C. Díaz, P. Castillo, and M. L. Valenzuela (2005). J. Cluster Sci. 16, 15.CrossRefGoogle Scholar
  46. 46.
    C. Díaz and M. L. Valenzuela (2006). J. Inorg. Organomet P. Mater. 16, 123.CrossRefGoogle Scholar
  47. 47.
    C. Díaz and M. L. Valenzuela (2006). Macromolecules 39, 103.CrossRefGoogle Scholar
  48. 48.
    C. Díaz and M. L. Valenzuela (2006). J. Inorg. Organomet P. Mater. 16, 216.Google Scholar
  49. 49.
    C. Díaz and M. L. Valenzuela (2006). J. Inorg. Organomet P. Mater. 16, 419.CrossRefGoogle Scholar
  50. 50.
    C. Diaz, M. L. Valenzuela, E. Spodine, Y. Moreno, and O. Peña (2007). J. Cluster Sci. 18, 831.CrossRefGoogle Scholar
  51. 51.
    C. Diaz, M. L. Valenzuela, D. Bravo, V. Lavayen, and C. O’Dwyer (2008). Inorg. Chem. 47, 11561.CrossRefGoogle Scholar
  52. 52.
    C. Diaz, M. L. Valenzuela, and S. Ushak (2008). J. Cluster Sci. 19, 471.CrossRefGoogle Scholar
  53. 53.
    J. Jimenez, A. Laguna, M. Benouazzane, J. A. Sanz, C. Diaz, M. L. Valenzuela, and P. Jones (2009). Chem. Eur. J. 15, 13509.CrossRefGoogle Scholar
  54. 54.
    C. Díaz, M. L. Valenzuela, L. Zuñiga, and C. O’Dwyer (2009). J. Inorg. Organometallic P. 19, 507.CrossRefGoogle Scholar
  55. 55.
    A. A. Rownaghi, Y. H. Taufiq-Yap, and F. Rezaei (2009). Chem. Eng. J. 155, 514.CrossRefGoogle Scholar
  56. 56.
    N. Dropka, V. N. Kalevaru, A. Martin, D. B. Linke, and B. Lucke (2006). J. Catal. 240, 8–17.CrossRefGoogle Scholar
  57. 57.
    M. P. Casaletto, L. Lissi, G. Mattogno, P. Patrono, and G. Ruoppolo (2004). Surf. Interface Anal. 36, 737.CrossRefGoogle Scholar
  58. 58.
    E. S. Takeuchi, A. C. Marschilok, K. Tanzil, E. Kozarsky, Sh Zhu, and K. J. Takeuchi (2009). Chem. Mater. 21, 493.CrossRefGoogle Scholar
  59. 59.
    G. A. Carriedo, L. Fernadez-Catuxo, F. G. Garcia Alonso, P. Gomez-Elipe, and P. Gonzalez (1996). Macromolecules 29, 5320.CrossRefGoogle Scholar
  60. 60.
    J. Livage (1991). Chem. Mater. 3, 578.CrossRefGoogle Scholar
  61. 61.
    L. Kong, Z. Liu, M. Shao, Q. Xie, W. Yu, and Y. Qian (2004). J. Solid State Chem. 177, 690.CrossRefGoogle Scholar
  62. 62.
    V. Petrov, N. T. Pantelis, E. M. Bozin, J. L. Billinge, T. Vogt, and G. Kanatzidis (2002). J.Am. Chem. Soc. 124, 10157.CrossRefGoogle Scholar
  63. 63.
    N. Ding, Sh Liu, X. Feng, H. Gao, X. Fang, J. Xu, W. Tremel, and I. Lieberwirth (2009). Cryst. Growth Des. 9, 1724.Google Scholar
  64. 64.
    C. O’Dwyer, V. Lavayen, D. A. Tanner, S. B. Newcomb, E. R. Benavente, G. Gonzalez, and C. M. Sotomayor (2009). Adv. Func. Mater. 19, 1736.CrossRefGoogle Scholar
  65. 65.
    W. G. Meneses, D. M. Reis, M. M. Oliveira, J. F. Soares, and A. J. G. Zarbin (2007). Chem. Phys. Chem. 445, 293.Google Scholar
  66. 66.
    M. Roppolo, Ch B Jacobs, Sh Upreti, N. A. Chernova, and M. S. Whittingham (2008). J Mater. Sci. 43, 4742.CrossRefGoogle Scholar
  67. 67.
    M. Corbiere, J. Beerens, and R. B. Lennox (2005). Chem. Mater. 17, 5774.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Carlos Díaz
    • 1
  • María Luisa Valenzuela
    • 2
  • Nicolas Yutronic
    • 1
  • Valeria Villalobos
    • 1
  • Gonzalo Barrera
    • 1
  1. 1.Departamento de Quimica, Facultad de CienciasUniversidad de ChileSantiagoChile
  2. 2.Departamento de Ciencias QuimicaUniversidad Andres Bello, Facultad de CienciasSantiagoChile

Personalised recommendations