Advertisement

Journal of Cluster Science

, 22:501 | Cite as

Time-Dependent Density Functional Theory Study on the Electronic Excited State of Hydrogen-Bonded Clusters Formed by 2-Hydroxybenzonitrile (o-Cyanophenol) and Carbon Monoxide

  • Jiazuo Zhang
  • Guangyan Zhao
  • Ruizhou Li
  • Dongyu Hou
Original Paper

Abstract

Time-dependent density functional theory (TDDFT) method has been carried out to investigate excited-state hydrogen-bonding dynamics between 2-hydroxybenzonitrile (o-cyanophenol) and carbon monoxide. We have demonstrated that intermolecular hydrogen bond between 2-hydroxybenzonitrile (o-cyanophenol) and C=O group are significantly strengthened in the electronically excited state by theoretically monitoring the changes of the bond lengths of hydrogen bonds and hydrogen-bonding groups in different electronic states. In this study, we firstly analyze frontier molecular orbitals (MOs). Our results are consistent with the intermolecular hydrogen bond strengthening in the electronically excited state of Coumarin 102 in alcoholic solvents, which has been demonstrated for the first time by Zhao and Han. Moreover, the calculated electronic excitation energies of the hydrogen bonding C=O and O–H groups are markedly red-shifted upon photoexcitation, which illustrates the hydrogen bonds strengthen in the electronically excited state again. And the geometric structures in both ground state and the S1 state of this hydrogen-bonded complex are calculated using the density functional theory (DFT) and TDDFT methods, respectively.

Keywords

Hydrogen bonding dynamics Excited state TDDFT Strengthening 

References

  1. 1.
    K.-L. Han and G.-J. Zhao Hydrogen Bonding, Transfer in the Excited State (John Wiley & Sons Ltd, UK, 2010). doi: 10.1002/9780470669143.CrossRefGoogle Scholar
  2. 2.
    A. W. Acton, A. D. Allen, L. M. Antunes, A. V. Fedorov, K. Najafian, T. T. Tidwell, and B. D. Wagner (2002). J. Am. Chem. Soc. 124, 13790.CrossRefGoogle Scholar
  3. 3.
    K. Bhattacharyya (2003). Acc. Chem. Res. 36, 95–101.CrossRefGoogle Scholar
  4. 4.
    G. R. Desiraju (1996). Acc. Chem. Res. 29, 441.CrossRefGoogle Scholar
  5. 5.
    G.-J. Zhao and K.-L. Han (2007). J. Phys. Chem. A 111, 2469.CrossRefGoogle Scholar
  6. 6.
    G.- J. Zhao and K.-L. Han (2007). J. Phys. Chem. A 111, 9218.CrossRefGoogle Scholar
  7. 7.
    Y. F. Liu, J. X. Ding, D. H. Shi, and J. F. Sun (2008). J. Phys. Chem. A 112, 6244.CrossRefGoogle Scholar
  8. 8.
    Y. Yamada, N. Mikami, and T. Ebata (2008). Proc. Natl. Acad. Sci. U.S.A. 105, 12690.CrossRefGoogle Scholar
  9. 9.
    M. Ziolek, G. Burdzinski, and J. Karolczak (2009). J. Phys. Chem. A 113, 2854.CrossRefGoogle Scholar
  10. 10.
    G. J. Zhao, K. L. Han, Y. B. Lei, and Y. S. Dou (2007). J. Chem. Phys. 127, 094307.CrossRefGoogle Scholar
  11. 11.
    C. E. Dykstra (2003). Adv. Chem. Phys. 126, 1.CrossRefGoogle Scholar
  12. 12.
    C. E. Dykstra (2003). J. Phys. Chem. A 197, 4196.CrossRefGoogle Scholar
  13. 13.
    G.-J. Zhao, R.-K. Chen, M.-T. Sun, G.-Y. Li, J.-Y. Liu, Y.-L. Gao, K.-L. Han, X.-C. Yang, and L.-C. Sun (2008). Chem. Eur. J. 14, 6935.CrossRefGoogle Scholar
  14. 14.
    D. Kanamori, T. A. Okamura, H. Yamamoto, and N. Ueyama (2005). Angew. Chem. Int. Ed. 44, 969.CrossRefGoogle Scholar
  15. 15.
    G. J. Zhao and K.-L. Han (2009). Phys. Chem. A 113, 4788.CrossRefGoogle Scholar
  16. 16.
    K. S. Kim, K. S. Oh, and J. Y. Lee (2000). Proc. Natl. Acad. Sci. U.S.A. 97, 6373.CrossRefGoogle Scholar
  17. 17.
    S. Chai, G.-J. Zhao, P. Song, S.-Q. Yang, J.-Y. Liu, and K.-L. Han (2009). Phys. Chem. Chem. Phys. 11, 4385.CrossRefGoogle Scholar
  18. 18.
    M. Barbatti and H. J. Lischka (2008). J. Am. Chem. Soc. 130, 6831.CrossRefGoogle Scholar
  19. 19.
    G.-J. Zhao, J.-Y. Liu, L.-C. Zhou, and K.-L. Han (2007). J. Phys. Chem. B 111, 8940.CrossRefGoogle Scholar
  20. 20.
    G.-J. Zhao and K.-L. Han (2008). J. Comput. Chem. 29, 2010.CrossRefGoogle Scholar
  21. 21.
    G.-J. Zhao and K.-L. Han (2008). Biophys. J. 94, 38.CrossRefGoogle Scholar
  22. 22.
    K. I. Priyadarsini (2009). J. Photochem. Photobiol. C: Photochem. Rev. 10, 81.CrossRefGoogle Scholar
  23. 23.
    G.-J. Zhao and K.-L. Han (2007). J. Chem. Phys. 127, 024306.CrossRefGoogle Scholar
  24. 24.
    G.-J. Zhao, Y.-H. Liu, K.-L. Han, and Y. S. Dou (2008). Chem. Phys. Lett. 453, 29.CrossRefGoogle Scholar
  25. 25.
    J. Han and J. B. Meng (2009). J. Photochem. Photobiol. C: Photochem. Rev. 10, 141.CrossRefGoogle Scholar
  26. 26.
    K.-L. Han, G.-Z. He, and N.-Q. Lou (1996). J. Chem. Phys. 105, 8699.CrossRefGoogle Scholar
  27. 27.
    C. W. Chang, L. J. Guo, Y. T. Kao, J. Li, C. Tan, T. P. Li, C. Saxena, Z. Y. Liu, L. J. Wang, A. Sancar, and D. P. Zhong (2010). Proc. Natl. Acad. Sci. U.S.A. 107, 2914.CrossRefGoogle Scholar
  28. 28.
    V. D. Kreslavski, R. Carpentier, V. V. Klimov, and S. I. Allakhverdiev (2009). J. Photochem. Photobiol. C: Photochem. Rev. 10, 63.CrossRefGoogle Scholar
  29. 29.
    G.-J. Zhao and K.-L. Han, in A. Sanchez and S. J. Gutierrez (eds.), Photochemistry Research Progress, Chapter 5 (Nova Science Publishers, New York, 2008).Google Scholar
  30. 30.
    Q. H. Chu, D. A. Medvetz, and Y. Pang (2007). Chem. Mater. 19, 6421.CrossRefGoogle Scholar
  31. 31.
    T. Y. Zhang, S. G. Sun, F. Y. Liu, J. L. Fan, Y. Pang, L. C. Sun, and X. J. Peng (2009). Phys. Chem. Chem. Phys. 11, 11134.CrossRefGoogle Scholar
  32. 32.
    W. H. Yi, A. Malkovskiy, Y. Q. Xu, X. Q. Wang, A. P. Sokolov, M. Lebron-Colon, M. A. Meador, and Y. Pang (2010). Polymer 51, 475.CrossRefGoogle Scholar
  33. 33.
    M. A. van der Horst, T. P. Stalcup, S. Kaledhonkar, M. Kumauchi, M. Hara, A. H. Xie, K. J. Hellingwerf, and W. D. Hoff (2009). J. Am. Chem. Soc. 131, 17443.CrossRefGoogle Scholar
  34. 34.
    A. F. Philip, K. T. Eisenman, G. A. Papadantonakis, and W. D. Hoff (2008). Biochemistry 47, 13800.CrossRefGoogle Scholar
  35. 35.
    A. H. Xie, W. D. Hoff, A. R. Kroon, and K. J. Hellingwerf (1996). Biochemistry 35, 14671.CrossRefGoogle Scholar
  36. 36.
    B. N. Nie, J. Stutzman, and A. H. Xie (2005). Biophys. J. 88, 2833.CrossRefGoogle Scholar
  37. 37.
    M. Kumauchi, M. T. Hara, P. Stalcup, A. H. Xie, and W. D. Hoff (2008). Photochem. Photobiol. 84, 956.CrossRefGoogle Scholar
  38. 38.
    F. Yu, P. Li, G. Li, G. J. Zhao, T. S. Chu, and K. L. Han (2011). J. Am. Chem. Soc. doi: 10.1021/ja202582x.
  39. 39.
    C. S. Ma, W. M. Kwok, W. S. Chan, P. Zuo, J. T. W. Kan, P. H. Toy, and D. L. Phillips (2005). J. Am. Chem. Soc. 127, 1463.CrossRefGoogle Scholar
  40. 40.
    C. S. Ma, W. M. Kwok, W. S. Chan, Y. Du, J. T. W. Kan, P. H. Toy, and D. L. J. Phillips (2006). J. Am. Chem. Soc. 128, 2558.CrossRefGoogle Scholar
  41. 41.
    C. S. Ma, P. Zuo, W. M. Kwok, W. S. Chan, J. T. W. Kan, P. H. Toy, and D. L. Phillips (2004). J. Org. Chem. 69, 6641.CrossRefGoogle Scholar
  42. 42.
    W. S. Chan, C. S. Ma, W. M. Kwok, and D. L. Phillips (2005). J. Phys. Chem. A 109, 3454.CrossRefGoogle Scholar
  43. 43.
    W. M. Kwok, C. S. Ma, and D. L. Phillips (2008). J. Am. Chem. Soc. 130, 5131.CrossRefGoogle Scholar
  44. 44.
    G.-J. Zhao, K.-L. Han, and P. J. Stang (2009). J. Chem. Theory Comput. 5, 1955.CrossRefGoogle Scholar
  45. 45.
    G. J. Zhao, B. Northrop, P. J. Stang, and K. L. Han (2009). J. Phys. Chem. A 114, 3418.CrossRefGoogle Scholar
  46. 46.
    G.-J. Zhao, B. H. Northrop, K.-L. Han, and P. J. Stang (2010). J. Phys. Chem. A 114, 9007.CrossRefGoogle Scholar
  47. 47.
    L.-C. Zhou, G.-J. Zhao, J.-F. Liu, K.-L. Han, Y.-K. Wu, X.-J. Peng, and M.-T. Sun (2007). J. Photochem. Photobiol. A: Chem. 187, 305.CrossRefGoogle Scholar
  48. 48.
    G.-J. Zhao, F. Yu, M. X. Zhang, B. H. Northrop, H. Yang, K. L. Han, and P. J. Stang (2011). J. Phys. Chem. A 115, 6390.CrossRefGoogle Scholar
  49. 49.
    T.-S. Chu, Y. Zhang, and K.-L. Han (2006). Int. Rev. Phys. Chem. 25, 201.CrossRefGoogle Scholar
  50. 50.
    S. K. Sahoo and M. Baral (2009). J. Photochem. Photobiol. C: Photochem. Rev. 10, 1.CrossRefGoogle Scholar
  51. 51.
    L. Serrano-Andres and M. Merchan (2009). J. Photochem. Photobiol. C: Photochem. Rev. 10, 21.CrossRefGoogle Scholar
  52. 52.
    K.-L. Han and G.-Z. He (2007). J. Photochem. Photobiol. C: Photochem. Rev. 8, 55.CrossRefGoogle Scholar
  53. 53.
    O. A. Sytina, D. J. Heyes, C. N. Hunter, M. T. Alexandre, I. H. M. van Stokkum, R. van Grondelle, and M. L. Groot (2008). Nature 456, 1001.CrossRefGoogle Scholar
  54. 54.
    O. A. Sytina, D. J. Heyes, C. N. Hunter, and M. L. Groot (2009). Biochem. Soc. Trans. 37, 387.CrossRefGoogle Scholar
  55. 55.
    P. Jaramillo, K. Coutinho, and S. Canuto (2009). J. Phys. Chem. A 113, 12485.CrossRefGoogle Scholar
  56. 56.
    S. Abbruzzetti, E. Grandi, C. Viappiani, S. Bologna, B. Campanini, S. Raboni, S. Bettati, and A. Mozzarelli (2005). J. Am. Chem. Soc. 127, 626.CrossRefGoogle Scholar
  57. 57.
    H. Baba, L. Goodman, and P. C. Valenti (1966). JACS 88, 5410.CrossRefGoogle Scholar
  58. 58.
    Y. Dimitrova (1988). J. Mol. Struct. (Theochem.) 455, 9.CrossRefGoogle Scholar
  59. 59.
    Y. Dimitrova (1999). Spectrochim. Acta A 55, 999.CrossRefGoogle Scholar
  60. 60.
    Y. Dimitrova (2000). J. Mol. Struct. (Theochem.) 499, 207.CrossRefGoogle Scholar
  61. 61.
    Y. Dimitrova (2004). Spectrochim. Acta A 60, 3049.CrossRefGoogle Scholar
  62. 62.
    J. Gebicki and A. Krantz (1984). J. Am. Chem. Soc. 106, 8093.CrossRefGoogle Scholar
  63. 63.
    J. Gebicki and A. Krantz (1984). J. Am. Chem. Soc. 106, 8097.CrossRefGoogle Scholar
  64. 64.
    S. Ren (2002). Environ. Toxicol. 17, 119.Google Scholar
  65. 65.
    S. B. Mekapati and C. Hansch (2002). J. Chem. Inf. Comput. Sci. 42, 956.CrossRefGoogle Scholar
  66. 66.
    G.-J. Zhao and K.-L. Han (2009). J. Phys. Chem. A 113, 14329.CrossRefGoogle Scholar
  67. 67.
    S. Horikoshi and N. J. Serpone (2009). J. Photochem. Photobiol. C: Photochem. Rev. 10, 96.Google Scholar
  68. 68.
    C. H. Tao and V. W. W. Yam (2009). J. Photochem. Photobiol. C: Photochem. Rev. 10, 130.CrossRefGoogle Scholar
  69. 69.
    Y. Liu, K. Ogawa, and K. S. Schanze (2009). J. Photochem. Photobiol. C: Photochem. Rev. 10, 173.CrossRefGoogle Scholar
  70. 70.
    S. Olsen and S. C. Smith (2008). J. Am. Chem. Soc. 130, 8677.CrossRefGoogle Scholar
  71. 71.
    T. Sakai, T. Senga, T. Furuta, and A. Miwa (2001). PCT Int. Appl. WO 01 47890 (Cl. C07D215/14), 5 July 2001.Google Scholar
  72. 72.
    L. D. Arnold, J. W. Coe, T. Kaneko, and M. P. Moyer (2000). US 6130217 (Cl. 514–253 A61K31/495), 10 October 2000.Google Scholar
  73. 73.
    L. Jin, J. Zhai, L. Heng, T. Wei, L. Wen, L. Jiang, X. Zhao, and X. J. Zhang (2009). J. Photochem. Photobiol. C: Photochem. Rev. 10, 149.CrossRefGoogle Scholar
  74. 74.
    C. Yun, J. You, J. Kim, J. Huh, and E. Kim (2009). J. Photochem. Photobiol. C: Photochem. Rev. 10, 111.CrossRefGoogle Scholar
  75. 75.
    F. Furche and R. Ahlrichs (2002). J. Chem. Phys. 117, 7433.CrossRefGoogle Scholar
  76. 76.
    J. L. Whitten (1973). J. Chem. Phys. 58, 4496.CrossRefGoogle Scholar
  77. 77.
    B. I. Dunlap, J. W. D. Conolly, and J. R. Sabin (1979). J. Chem. Phys. 71, 3396.CrossRefGoogle Scholar
  78. 78.
    O. Vahtras, J. E. Almlof, and M. W. Feyereisen (1993). Chem. Phys. Lett. 213, 514.CrossRefGoogle Scholar
  79. 79.
    A. Schafer, C. Huber, and R. Ahlrichs (1994). J. Chem. Phys. 100, 5829.CrossRefGoogle Scholar
  80. 80.
    R. Ahlrichs, M. Bar, H. Horn, and C. Kolmel (1989). Chem. Phys. Lett. 162, 165.CrossRefGoogle Scholar
  81. 81.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, CT, 2009).Google Scholar
  82. 82.
    C. Ratzer, J. Keupper, D. Spangenberg, and M. Schmitt (2002). Chem. Phys. 283, 153.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jiazuo Zhang
    • 1
  • Guangyan Zhao
    • 1
    • 2
  • Ruizhou Li
    • 2
  • Dongyu Hou
    • 2
  1. 1.State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of TechnologyDalianChina
  2. 2.College of Textile and GarmentHebei University of Science and TechnologyShijiazhuangChina

Personalised recommendations